Binquan Kou
Shanghai Jiao Tong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Binquan Kou.
Journal of Synchrotron Radiation | 2012
Yan Xi; Binquan Kou; Haohua Sun; Juncheng Qi; Jianqi Sun; Jürgen Mohr; Martin Börner; Jun Zhao; Lisa X. Xu; Tiqiao Xiao; Yujie Wang
An X-ray grating interferometer was installed at the BL13W beamline of Shanghai Synchrotron Radiation Facility (SSRF) for biomedical imaging applications. Compared with imaging results from conventional absorption-based micro-computed tomography, this set-up has shown much better soft tissue imaging capability. In particular, using the set-up, the carotid artery and the carotid vein in a formalin-fixed mouse can be visualized in situ without contrast agents, paving the way for future applications in cancer angiography studies. The overall results have demonstrated the broad prospects of the existing set-up for biomedical imaging applications at SSRF.
Nature Communications | 2014
Jindong Li; Yixin Cao; Chengjie Xia; Binquan Kou; Xianghui Xiao; Kamel Fezzaa; Yujie Wang
To date, there is still no general consensus on the fundamental principle that governs glass transition. Colloidal suspensions are ordinarily utilized as model systems to study the dynamical arrest mechanisms in glass or gels. Here, we tackle the problem using athermal granular particles. Slow dynamics and structural evolution of granular packing upon tapping are monitored by fast X-ray tomography. When the packing are wet and short-range attractive interactions exist, we find a large amount of locally favoured structures with fivefold symmetry, which bear great structural similarity to colloidal gels. In addition, these structures are almost absent in dry packing with similar packing fractions. The study leads strong support for the geometrical frustration mechanism for dynamic arrest in both thermal and athermal systems with attractive interactions. It also suggests nontrivial structural mechanism, if exists, for dynamic arrest in systems with purely repulsive interactions.
Nature | 2017
Binquan Kou; Yixin Cao; Jindong Li; Chengjie Xia; Zhifeng Li; Haipeng Dong; Ang Zhang; Jie Zhang; Walter Kob; Yujie Wang
Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they ‘relax’, becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax even when the driving strain is weak.
Soft Matter | 2014
Chengjie Xia; Kuan Zhu; Yixin Cao; Haohua Sun; Binquan Kou; Yujie Wang
We present an X-ray tomography study for the random packing of ellipsoids. The local structure displays short-range correlations. In addition to the contact number Z, we introduce ρshell, the average contact radius of curvature for contacting neighbors, as an additional parameter to characterize the local orientational geometry. In general, the local free volume w is affected by both Z and ρshell. We believe that the particle asphericity induces a polydispersity effect to influence the packing properties. A model is introduced which explicitly maps the ellipsoid packing onto a polydispersed sphere one, and it reproduces most of the experimental observations.
PLOS ONE | 2015
Huimin Lin; Binquan Kou; Xiangting Li; Yujie Wang; Bei Ding; Chen Shi; Huanhuan Liu; Rongbiao Tang; Jianqi Sun; Fuhua Yan; Huan Zhang
Purpose To assess the feasibility of the grating-based phase-contrast imaging (GPI) technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents. Methods We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF) and compared with histological sections. Results Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape. Conclusions Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases.
Soft Matter | 2014
Yixin Cao; Xiaodan Zhang; Binquan Kou; Xiangting Li; Xianghui Xiao; Kamel Fezzaa; Yujie Wang
We present a dynamic synchrotron X-ray imaging study of the effective temperature Teff in a vibrated granular medium. By tracking the directed motion and the fluctuation dynamics of the tracers inside, we obtained Teff of the system using the Einstein relationship. We found that as the system unjams with increasing vibration intensities Γ, the structural relaxation time τ increases substantially which can be fitted by an Arrhenius law using Teff. And the characteristic energy scale of structural relaxation yielded by the Arrhenius fitting is E = 0.20 ± 0.02pd(3), where p is the pressure and d is the background particle diameter, which is consistent with those from hard sphere simulations in which the structural relaxation happens via the opening up of free volume against pressure.
Nature Communications | 2018
Yixin Cao; Jindong Li; Binquan Kou; Chengjie Xia; Zhifeng Li; Rongchang Chen; Honglan Xie; Tiqiao Xiao; Walter Kob; Liang Hong; Jie Zhang; Yujie Wang
Upon mechanical loading, granular materials yield and undergo plastic deformation. The nature of plastic deformation is essential for the development of the macroscopic constitutive models and the understanding of shear band formation. However, we still do not fully understand the microscopic nature of plastic deformation in disordered granular materials. Here we used synchrotron X-ray tomography technique to track the structural evolutions of three-dimensional granular materials under shear. We establish that highly distorted coplanar tetrahedra are the structural defects responsible for microscopic plasticity in disordered granular packings. The elementary plastic events occur through flip events which correspond to a neighbor switching process among these coplanar tetrahedra (or equivalently as the rotation motion of 4-ring disclinations). These events are discrete in space and possess specific orientations with the principal stress direction.It is a general consensus that the structural defects are the plasticity carriers in amorphous solids, but its microscopic view remains largely unknown. Cao et a. show that highly distorted coplanar tetrahedra act as defects in granular packings, which flip under shear to carry local plasticity.
Proceedings of SPIE | 2014
Yujie Wang; Chengjie Xia; Yixin Cao; Binquan Kou; Jindong Li; Xianghui Xiao; Kamel Fezzaa
Owing to the high photon flux of synchrotron radiation, the exposure time is greatly reduced, and the total data-acquisition time of a tomography scan has been shortened to second level. Thus a four dimensional (3D structural and temporal) imaging technique can be utilized to capture the structural evolvement of 3D systems. Utilizing this technique, we studied the structural evolvement and particle-scale dynamics of three dimensional (3D) granular packing under tapping. We conducted a tomographic scan of the packing after each tapping, and the displacement of each particle was captured through a tracking algorithm. An averaged 3D flow field of the packing under tapping was also calculated. The major conclusion of this work is that the local particle fluctuation displacements are correlated with local packing structures, which are characterized through the size and shape of the Voronoi cells.
Scientific Reports | 2015
Sheng Huang; Binquan Kou; Yayun Chi; Yan Xi; Yixin Cao; Wenli Cui; Xin Hu; Zhimin Shao; Han Guo; Yanan Fu; Tiqiao Xiao; Jianqi Sun; Jun Zhao; Yujie Wang; Jiong Wu
Nature Communications | 2015
Chengjie Xia; Jindong Li; Yixin Cao; Binquan Kou; Xinaghui Xiao; Kamel Fezzaa; Tiqiao Xiao; Yujie Wang