Biplab Dasgupta
Cincinnati Children's Hospital Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biplab Dasgupta.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Biplab Dasgupta; Jeffrey Milbrandt
Resveratrol is a polyphenol produced by plants that has multiple beneficial activities similar to those associated with caloric restriction (CR), such as increased life span and delay in the onset of diseases associated with aging. CR improves neuronal health, and the global beneficial effects of CR have been postulated to be mediated by the nervous system. One key enzyme thought to be activated during CR is the AMP-activated kinase (AMPK), a sensor of cellular energy levels. AMPK is activated by increases in the cellular AMP:ATP ratio, whereupon it functions to help preserve cellular energy. In this regard, the regulation of dietary food intake by hypothalamic neurons is mediated by AMPK. The suppression of nonessential energy expenditure by activated AMPK along with the CR mimetic and neuroprotective properties of resveratrol led us to hypothesize that neuronal activation of AMPK could be an important component of resveratrol activity. Here, we show that resveratrol activated AMPK in Neuro2a cells and primary neurons in vitro as well as in the brain. Resveratrol and the AMPK-activating compound 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) promoted robust neurite outgrowth in Neuro2a cells, which was blocked by genetic and pharmacologic inhibition of AMPK. Resveratrol also stimulated mitochondrial biogenesis in an AMPK-dependent manner. Resveratrol-stimulated AMPK activity in neurons depended on LKB1 activity but did not require the NAD-dependent protein deacetylase SIRT1 during this time frame. These findings suggest that neuronal activation of AMPK by resveratrol could affect neuronal energy homeostasis and contribute to the neuroprotective effects of resveratrol.
Cancer Research | 2005
Biplab Dasgupta; Yijun Yi; David Y. T. Chen; Jason D. Weber; David H. Gutmann
Individuals with the tumor predisposition syndrome, neurofibromatosis 1 (NF1), are prone to development of nervous system tumors, including neurofibromas and pilocytic astrocytomas. Based on the ability of the NF1 gene product (neurofibromin) to function as a GTPase activating protein for RAS, initial biologically based therapies for NF1-associated tumors focused on the use of RAS inhibitors, but with limited clinical success. In an effort to identify additional targets for therapeutic drug design in NF1, we used an unbiased proteomic approach to uncover unanticipated intracellular signaling pathways dysregulated in Nf1-deficient astrocytes. We found that the expression of proteins involved in promoting ribosome biogenesis was increased in the absence of neurofibromin. In addition, Nf1-deficient astrocytes exhibit high levels of mammalian target of rapamycin (mTOR) pathway activation, which was inhibited by blocking K-RAS or phosphatidylinositol 3-kinase activation. This mTOR pathway hyperactivation was reflected by high levels of ribosomal S6 activation in both Nf1 mutant mouse optic nerve gliomas and in human NF1-associated pilocytic astrocytoma tumors. Moreover, inhibition of mTOR signaling in Nf1-/- astrocytes abrogated their growth advantage in culture, restoring normal proliferative rates. These results suggest that mTOR pathway inhibition may represent a logical and tractable biologically based therapy for brain tumors in NF1.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Xiaona Liu; Rishi Raj Chhipa; Shabnam Pooya; Matthew Wortman; Sara Yachyshin; Lionel M.L. Chow; Ashish Kumar; Xuan Zhou; Ying Sun; Brian Quinn; Christopher McPherson; Ronald E. Warnick; Ady Kendler; Shailendra Giri; Jeroen Poels; Koenraad Norga; Benoit Viollet; Gregory A. Grabowski; Biplab Dasgupta
Significance Cancer cells reprogram their metabolism for optimal growth and survival. AMPK-activated protein kinase (AMPK) is a key energy sensor that controls many metabolic pathways including metabolic reprogramming. However, its role in cancer is poorly understood. Some studies claim that it has a tumor suppressor role while others show its protumor role. Two AMPK-activating compounds (including metformin, now in many clinical trials) are widely used to suppress cancer cell proliferation. We found that AMPK is abundantly expressed in high-grade gliomas and, in contrast to popular belief, these two AMPK activators suppressed glioma cell proliferation through unique AMPK-independent mechanisms. The multifunctional AMPK-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor that plays an important role in cell proliferation, growth, and survival. It remains unclear whether AMPK functions as a tumor suppressor or a contextual oncogene. This is because although on one hand active AMPK inhibits mammalian target of rapamycin (mTOR) and lipogenesis—two crucial arms of cancer growth—AMPK also ensures viability by metabolic reprogramming in cancer cells. AMPK activation by two indirect AMPK agonists AICAR and metformin (now in over 50 clinical trials on cancer) has been correlated with reduced cancer cell proliferation and viability. Surprisingly, we found that compared with normal tissue, AMPK is constitutively activated in both human and mouse gliomas. Therefore, we questioned whether the antiproliferative actions of AICAR and metformin are AMPK independent. Both AMPK agonists inhibited proliferation, but through unique AMPK-independent mechanisms and both reduced tumor growth in vivo independent of AMPK. Importantly, A769662, a direct AMPK activator, had no effect on proliferation, uncoupling high AMPK activity from inhibition of proliferation. Metformin directly inhibited mTOR by enhancing PRAS40’s association with RAPTOR, whereas AICAR blocked the cell cycle through proteasomal degradation of the G2M phosphatase cdc25c. Together, our results suggest that although AICAR and metformin are potent AMPK-independent antiproliferative agents, physiological AMPK activation in glioma may be a response mechanism to metabolic stress and anticancer agents.
Cancer Research | 2007
Nicole M. Warrington; B. Mark Woerner; Girish Daginakatte; Biplab Dasgupta; Arie Perry; David H. Gutmann; Joshua B. Rubin
Astrocytoma (glioma) formation in neurofibromatosis type 1 (NF1) occurs preferentially along the optic pathway during the first decade of life. The molecular basis for this unique pattern of gliomagenesis is unknown. Previous studies in mouse Nf1 optic glioma models suggest that this patterning results from cooperative effects of Nf1 loss in glial cells and the action of factors derived from the surrounding Nf1+/- brain. Because CXCL12 is a stroma-derived growth factor for malignant brain tumors, we tested the hypothesis that CXCL12 functions in concert with Nf1 loss to facilitate NF1-associated glioma growth. Whereas CXCL12 promoted cell death in wild-type astrocytes, it increased Nf1-/- astrocyte survival. This increase in Nf1-/- astrocyte survival in response to CXCL12 was due to sustained suppression of intracellular cyclic AMP (cAMP) levels. Moreover, the ability of CXCL12 to suppress cAMP and increase Nf1-/- astrocyte survival was a consequence of mitogen-activated protein/extracellular signal-regulated kinase kinase-dependent inhibition of CXCL12 receptor (CXCR4) desensitization. In support of an instructive role for CXCL12 in facilitating optic glioma growth, we also show that CXCL12 expression along the optic pathway is higher in infant children and young mice and is associated with low levels of cAMP. CXCL12 expression declines in multiple brain regions with increasing age, correlating with the age-dependent decline in glioma growth in children with NF1. Collectively, these studies provide a mechanism for the unique pattern of NF1-associated glioma growth.
The Journal of Neuroscience | 2005
Biplab Dasgupta; David H. Gutmann
Neurofibromatosis 1 (NF1) is a common inherited disease in which affected children exhibit abnormalities in astrocyte growth regulation and are prone to the development of brain tumors (astrocytoma). Previous studies from our laboratory demonstrated that Nf1 mutant mouse astrocytomas contains populations of proliferating nestin+ progenitor cells, suggesting that immature astroglial progenitors may serve as a reservoir of proliferating tumor cells. Here, we directly examined the consequences of Nf1 inactivation on neural stem cell (NSC) proliferation in vitro and in vivo. We found dose-dependent effects of neurofibromin expression on NSC proliferation and survival in vitro, which reflected increased RAS pathway activation and increased bcl2 expression. In addition, unlike wild-type NSCs, Nf1-/- NSCs and, to a lesser extent, Nf1+/- NSCs survive as xenografts in naive recipient brains in vivo. Although Nf1-/- NSCs are multipotent, Nf1-/- and Nf1+/-, but not wild-type, NSCs generated increased numbers of morphologically abnormal, immature astroglial cells in vitro. Moreover, the Nf1-/- NSC growth and survival advantage as well as the astroglial cell differentiation defect were completely rescued by expression of the GAP (RAS-GTPase activating protein) domain of neurofibromin. Finally, the increase in astroglial progenitors and proliferating cells seen in vitro was also observed in Nf1-/- and Nf1+/- embryonic as well as Nf1+/- adult brains in vivo. Collectively, these findings support the hypothesis that alterations in neurofibromin expression in the developing brain have significant consequences for astrocyte growth and differentiation relevant to normal brain development and astrocytoma formation in children.
Molecular Cancer Therapeutics | 2014
Xiaona Liu; Rishi Raj Chhipa; Ichiro Nakano; Biplab Dasgupta
AMP-activated protein kinase (AMPK) is an evolutionarily conserved energy sensor important for cell growth, proliferation, survival, and metabolic regulation. Active AMPK inhibits biosynthetic enzymes like mTOR and acetyl CoA carboxylase (required for protein and lipid synthesis, respectively) to ensure that cells maintain essential nutrients and energy during metabolic crisis. Despite our knowledge about this incredibly important kinase, no specific chemical inhibitors are available to examine its function. However, one small molecule known as compound C (also called dorsomorphin) has been widely used in cell-based, biochemical, and in vivo assays as a selective AMPK inhibitor. In nearly all these reports including a recent study in glioma, the biochemical and cellular effects of compound C have been attributed to its inhibitory action toward AMPK. While examining the status of AMPK activation in human gliomas, we observed that glioblastomas express copious amount of active AMPK. Compound C effectively reduced glioma viability in vitro both by inhibiting proliferation and inducing cell death. As expected, compound C inhibited AMPK; however, all the antiproliferative effects of this compound were AMPK independent. Instead, compound C killed glioma cells by multiple mechanisms, including activation of the calpain/cathepsin pathway, inhibition of AKT, mTORC1/C2, cell-cycle block at G2–M, and induction of necroptosis and autophagy. Importantly, normal astrocytes were significantly less susceptible to compound C. In summary, compound C is an extremely potent antiglioma agent but we suggest that caution should be taken in interpreting results when this compound is used as an AMPK inhibitor. Mol Cancer Ther; 13(3); 596–605. ©2014 AACR.
Current Opinion in Genetics & Development | 2003
Biplab Dasgupta; David H. Gutmann
Neurofibromatosis 1 (NF1) is a common genetic condition in which affected individuals are prone to the development of benign and malignant tumors. The NF1 tumor suppressor encodes a protein product, neurofibromin, which functions in part as a negative regulator of RAS. Loss of neurofibromin expression in NF1-associated tumors or Nf1-deficient mouse cells is associated with elevated RAS activity and increased cell proliferation. Despite this straightforward pathophysiologic association between neurofibromin, RAS, and tumorigenesis, recent insights from mouse and Drosophila modeling studies have suggested additional functions for neurofibromin and have implicated Nf1 heterozygosity in tumor formation. Lastly, Nf1 knockout mouse studies have also demonstrated important roles for cooperating genetic changes that accelerate tumorigenesis as well as modifier genes that impact on cancer susceptibility.
Cancer Cell | 2016
Sung Hak Kim; Ravesanker Ezhilarasan; Emma Phillips; Daniel Gallego-Perez; Amanda Sparks; David Taylor; Katherine J. Ladner; Takuya Furuta; Hemragul Sabit; Rishi Raj Chhipa; Ju Hwan Cho; Ahmed Mohyeldin; Samuel Beck; Kazuhiko Kurozumi; Toshihiko Kuroiwa; Ryoichi Iwata; Akio Asai; Jonghwan Kim; Erik P. Sulman; Shi Yuan Cheng; L. James Lee; Mitsutoshi Nakada; Denis C. Guttridge; Biplab Dasgupta; Violaine Goidts; Krishna P. Bhat; Ichiro Nakano
Activation of nuclear factor κB (NF-κB) induces mesenchymal (MES) transdifferentiation and radioresistance in glioma stem cells (GSCs), but molecular mechanisms for NF-κB activation in GSCs are currently unknown. Here, we report that mixed lineage kinase 4 (MLK4) is overexpressed in MES but not proneural (PN) GSCs. Silencing MLK4 suppresses self-renewal, motility, tumorigenesis, and radioresistance of MES GSCs via a loss of the MES signature. MLK4 binds and phosphorylates the NF-κB regulator IKKα, leading to activation of NF-κB signaling in GSCs. MLK4 expression is inversely correlated with patient prognosis in MES, but not PN high-grade gliomas. Collectively, our results uncover MLK4 as an upstream regulator of NF-κB signaling and a potential molecular target for the MES subtype of glioblastomas.
Trends in Pharmacological Sciences | 2016
Biplab Dasgupta; Rishi Raj Chhipa
AMP kinase (AMPK) is an evolutionarily conserved enzyme required for adaptive responses to various physiological and pathological conditions. AMPK executes numerous cellular functions, some of which are often perceived at odds with each other. While AMPK is essential for embryonic growth and development, its full impact in adult tissues is revealed under stressful situations that organisms face in the real world. Conflicting reports about its cellular functions, particularly in cancer, are intriguing and a growing number of AMPK activators are being developed to treat human diseases such as cancer and diabetes. Whether these drugs will have only context-specific benefits or detrimental effects in the treatment of human cancer will be a subject of intense research. Here we review the current state of AMPK research with an emphasis on cancer and discuss the yet unresolved context-dependent functions of AMPK in human cancer.
Molecular and Cellular Biology | 2012
Biplab Dasgupta; Jeong Sun Ju; Yo Sasaki; Xiaona Liu; Su Ryun Jung; Kazuhiko Higashida; Diana M. Lindquist; Jeffrey Milbrandt
ABSTRACT AMP activated protein kinase (AMPK) plays a key role in the regulatory network responsible for maintaining systemic energy homeostasis during exercise or nutrient deprivation. To understand the function of the regulatory β2 subunit of AMPK in systemic energy metabolism, we characterized β2 subunit-deficient mice. Using these mutant mice, we demonstrated that the β2 subunit plays an important role in regulating glucose, glycogen, and lipid metabolism during metabolic stress. The β2 mutant animals failed to maintain euglycemia and muscle ATP levels during fasting. In addition, β2-deficient animals showed classic symptoms of metabolic syndrome, including hyperglycemia, glucose intolerance, and insulin resistance when maintained on a high-fat diet (HFD), and were unable to maintain muscle ATP levels during exercise. Cell surface-associated glucose transporter levels were reduced in skeletal muscle from β2 mutant animals on an HFD. In addition, they displayed poor exercise performance and impaired muscle glycogen metabolism. These mutant mice had decreased activation of AMPK and deficits in PGC1α-mediated transcription in skeletal muscle. Our results highlight specific roles of AMPK complexes containing the β2 subunit and suggest the potential utility of AMPK isoform-specific pharmacological modulators for treatment of metabolic, cardiac, and neurological disorders.