Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Andrée is active.

Publication


Featured researches published by Birgit Andrée.


Advanced Drug Delivery Reviews | 2016

Large-scale production of human pluripotent stem cell derived cardiomyocytes ☆

Henning Kempf; Birgit Andrée; Robert Zweigerdt

Regenerative medicine, including preclinical studies in large animal models and tissue engineering approaches as well as innovative assays for drug discovery, will require the constant supply of hPSC-derived cardiomyocytes and other functional progenies. Respective cell production processes must be robust, economically viable and ultimately GMP-compliant. Recent research has enabled transition of lab scale protocols for hPSC expansion and cardiomyogenic differentiation towards more controlled processing in industry-compatible culture platforms. Here, advanced strategies for the cultivation and differentiation of hPSCs will be reviewed by focusing on stirred bioreactor-based techniques for process upscaling. We will discuss how cardiomyocyte mass production might benefit from recent findings such as cell expansion at the cardiovascular progenitor state. Finally, remaining challenges will be highlighted, specifically regarding three dimensional (3D) hPSC suspension culture and critical safety issues ahead of clinical translation.


Tissue Engineering Part A | 2013

Generation of bioartificial heart tissue by combining a three-dimensional gel-based cardiac construct with decellularized small intestinal submucosa.

Zlata Vukadinovic-Nikolic; Birgit Andrée; Suzanne E. Dorfman; Michael Pflaum; Tibor Horvath; Marco Lux; Letizia Venturini; Antonia Bär; George Kensah; Angelica Roa Lara; I. Tudorache; Serghei Cebotari; Denise Hilfiker-Kleiner; Axel Haverich; Andres Hilfiker

The in vitro generation of a bioartificial cardiac construct (CC) represents a promising tool for the repair of ischemic heart tissue. Several approaches to engineer cardiac tissue in vitro have been conducted. The main drawback of these studies is the insufficient size of the resulting construct for clinical applications. The focus of this study was the generation of an artificial three-dimensional (3D), contractile, and suturable myocardial patch by combining a gel-based CC with decellularized porcine small intestinal submucosa (SIS), thereby engineering an artificial tissue of 11 cm² in size. The alignment and morphology of rat neonatal cardiomyocytes (rCMs) in SIS-CC complexes were investigated as well as the re-organization of primary endothelial cells which were co-isolated in the rCM preparation. The ability of a rat heart endothelial cell line (RHE-A) to re-cellularize pre-existing vessel structures within the SIS or a biological vascularized matrix (BioVaM) was determined. SIS-CC contracted spontaneously, uniformly, and rhythmically with an average rate of 200 beats/min in contrast to undirected contractions observed in CC without SIS support. rCM exhibited an elongated morphology with well-defined sarcomeric structures oriented along the longitudinal axis in the SIS-CC, whereas round-shaped and random-arranged rCM were observed in CC. Electric coupling of rCM was demonstrated by microelectrode array measurements. A dense network of CD31⁺/eNOS⁺ cells was detected as permeating the whole construct. Superficial supplementation of RHE-A cells to SIS-CC led to the migration of these cells through the CC, resulting in the re-population of pre-existing vessel structures within the decelluarized SIS. By infusion of RHE-A cells into the BioVaM venous and arterial pedicles, a re-population of the BioVaM vessel bed as well as distribution of RHE-A cells throughout the CC was achieved. Rat endothelial cells within the CC were in contact with RHE-A cells. Ingrowth and formation of a network by endothelial cells infused through the BioVaM represent a promising step toward engineering a functional perfusion system, enabling the engineering of vascularized and well-nourished 3D CC of dimensions relevant for therapeutic heart repair.


Acta Biomaterialia | 2016

In vitro maturation of large-scale cardiac patches based on a perfusable starter matrix by cyclic mechanical stimulation.

Marco Lux; Birgit Andrée; Tibor Horvath; Anna Nosko; Dominique Manikowski; Denise Hilfiker-Kleiner; Axel Haverich; Andres Hilfiker

UNLABELLED The ultimate goal of tissue engineering is the generation of implants similar to native tissue. Thus, it is essential to utilize physiological stimuli to improve the quality of engineered constructs. Numerous publications reported that mechanical stimulation of small-sized, non-perfusable, tissue engineered cardiac constructs leads to a maturation of immature cardiomyocytes like neonatal rat cardiomyocytes or induced pluripotent stem cells/embryonic stem cells derived self-contracting cells. The aim of this study was to investigate the impact of mechanical stimulation and perfusion on the maturation process of large-scale (2.5×4.5cm), implantable cardiac patches based on decellularized porcine small intestinal submucosa (SIS) or Biological Vascularized Matrix (BioVaM) and a 3-dimensional construct containing neonatal rat heart cells. Application of cyclic mechanical stretch improved contractile function, cardiomyocyte alignment along the stretch axis and gene expression of cardiomyocyte markers. The development of a complex network formed by endothelial cells within the cardiac construct was enhanced by cyclic stretch. Finally, the utilization of BioVaM enabled the perfusion of the matrix during stimulation, augmenting the beneficial influence of cyclic stretch. Thus, this study demonstrates the maturation of cardiac constructs with clinically relevant dimensions by the application of cyclic mechanical stretch and perfusion of the starter matrix. STATEMENT OF SIGNIFICANCE Considering the poor endogenous regeneration of the heart, engineering of bioartificial cardiac tissue for the replacement of infarcted myocardium is an exciting strategy. Most techniques for the generation of cardiac tissue result in relative small-sized constructs insufficient for clinical applications. Another issue is to achieve cardiomyocytes and tissue maturation in culture. Here we report, for the first time, the effect of mechanical stimulation and simultaneous perfusion on the maturation of cardiac constructs of clinical relevant dimensions, which are based on a perfusable starter matrix derived from porcine small intestine. In response to these stimuli superior organization of cardiomyocytes and vascular networks was observed in contrast to untreated controls. The study provides substantial progress towards the generation of implantable cardiac patches.


Acta Biomaterialia | 2016

Effects of combined cryopreservation and decellularization on the biomechanical, structural and biochemical properties of porcine pulmonary heart valves.

Karolina Theodoridis; Janina Müller; Robert Ramm; Katja Findeisen; Birgit Andrée; Sotirios Korossis; Axel Haverich; Andres Hilfiker

UNLABELLED Non-fixed, decellularized allogeneic heart valve scaffolds seem to be the best choice for heart valve replacement, their availability, however, is quite limited. Cryopreservation could prolong their shelf-life, allowing for their ideal match to a recipient. In this study, porcine pulmonary valves were decellularized using detergents, either prior or after cryopreservation, and analyzed. Mechanical integrity was analyzed by uniaxial tensile testing, histoarchitecture by histological staining, and composition by DNA, collagen (hydroxyproline) and GAG (chondroitin sulfate) quantification. Residual sodium dodecyl sulfate (SDS) in the scaffold was quantified by applying a methylene blue activation assay (MBAS). Cryopreserved decellularized scaffolds (DC) and scaffolds that were decellularized after cryopreservation (CD) were compared to fresh valves (F), cryopreserved native valves (C), and decellularized only scaffolds (D). The E-modulus and tensile strength of decellularized (D) tissue showed no significant difference compared to DC and CD. The decellularization resulted in an overall reduction of DNA and GAG, with DC containing the lowest amount of GAGs. The DNA content in the valvular wall of the CD group was higher than in the D and DC groups. CD valves showed slightly more residual SDS than DC valves, which might be harmful to recipient cells. In conclusion, cryopreservation after decellularization was shown to be preferable over cryopreservation before decellularization. However, in vivo testing would be necessary to determine whether these differences are significant in biocompatibility or immunogenicity of the scaffolds. STATEMENT OF SIGNIFICANCE Absence of adverse effects on biomechanical stability of acellular heart valve grafts by cryopreservation, neither before nor after decellularization, allows the identification of best matching patients in a less time pressure dictated process, and therefore to an optimized use of a very limited, but best-suited heart valve prosthesis.


Current Gene Therapy | 2016

Directing Cardiomyogenic Differentiation and Transdifferentiation By Ectopic Gene Expression - Direct Transition Or Reprogramming Detour?

Birgit Andrée; Robert Zweigerdt

Cardiovascular disorders and associated morbidities remain the leading cause of premature death worldwide. Since the regeneration of diseased hearts is very limited and the insufficient supply of donor organs persists, hopes rely on new therapies for heart repair. Reviving the proliferation of endogenous cardiomyocytes (CMs) or the administration of adult stem cells to the heart was of limited curative success to date. Thus, the administration of in vitro generated CMs is under investigation to replenish loss of functional heart muscle tissue. This requires a sustainable source of CMs. Induced pluripotent stem cells (iPSC) have raised hopes for developing autologous cell therapies. To serve for heart repair, efficient and safe iPSC differentiation protocols for CMs production are required. iPSC differentiation into CMs and even functional subtypes was indeed achieved in recent years, either by the ectopic expression of cardiac transcription factors or the supplementation of chemical pathway modulators. An alternative approach aims at the direct transdifferentiation of fibroblasts, which are present in the interstitial tissue of many organs, into functional lineage-specific cell types. As a result the formation of induced cardiomyocyte-like cells (iCMs) by the ectopic expression of specific transcription factors combinations has been demonstrated in vitro and in vivo. This is an important proof-of-concept that the intermediate state of iPSC induction is dispensable. However, most of the early experiments were conducted in mice and translation to more relevant large animal models and subsequently to the clinic are challenging. Progress, drawbacks, and perspectives in this field will be discussed.


European Journal of Pediatric Surgery | 2014

BioVaM in the rat model: a new approach of vascularized 3D tissue for esophageal replacement.

Alejandro D. Hofmann; Andres Hilfiker; Axel Haverich; Birgit Andrée; Joachim F. Kuebler; Benno M. Ure

INTRODUCTION A major obstacle in tissue engineering is to create a surgically implantable tissue with long-term viability. Several promising techniques have focused on biological vascularized matrices (BioVaM) with preserved vascular pedicles in the porcine model. However, the handling of this model is time-consuming and expensive. Therefore, our aim was to establish a BioVaM in the rat. MATERIALS AND METHODS Small bowel segments of Sprague-Dawley rats were isolated and perfused via cannulation of the superior mesenteric artery and the portal vein. All cellular matrix components were removed by sequential treatment with sodium dodecyl sulfate, sodium deoxycholate, and DNase. Quality of decellularization was investigated by histology and potential residual DNA by spectrophotometry. Primary endothelial cells (ECs) isolated from the major vessels of Sprague-Dawley rats. Cells were labeled with fluorescent cell tracker and injected into the vascular pedicles of the matrix. Attachment of ECs was assessed using fluorescence microscopy of the whole mount. RESULTS Decellularized matrix demonstrated the absence of cellular components but conserved matrix architecture as determined by immune fluorescent, pentachrome, and hematoxylin and eosin stains. DNA content was reduced by more than 99%. ECs were characterized by specific staining against endothelial nitric oxide synthase and von Willebrand factor; when injected, ECs attached along the vessel walls including the capillaries of the intestinal wall. CONCLUSIONS Rat small bowel segments harvested with intact vascular pedicles and associated vascular network can be successfully decellularized and re-endothelialized ex vivo. This model is an inexpensive and easy to handle alternative and appears to be a promising approach for establishing vascularized tissue constructs.


Vascular Pharmacology | 2018

Human adipose tissue-derived stromal cells in combination with exogenous stimuli facilitate three-dimensional network formation of human endothelial cells derived from various sources

Dominique Manikowski; Birgit Andrée; Esther Samper; Clémence Saint-Marc; Ruth Olmer; Peter M. Vogt; Sarah Strauß; Axel Haverich; Andres Hilfiker

In natural tissues, the nutrition of cells and removal of waste products is facilitated by a dense capillary network which is generated during development. This perfusion system is also indispensable for tissue formation in vitro. Nutrition depending solely on diffusion is not sufficient to generate tissues of clinically relevant dimensions, which is a core aim in tissue engineering research. In this study, the establishment of a vascular network was investigated in a self-assembling approach employing endothelial and mural cells. The process of vascularization was analyzed in constructs based on a carrier matrix of decellularized porcine small intestinal submucosa (SIS). A three-dimensional hydrogel containing Matrigel™, collagen, and respective cells was casted on top of the SIS. Various types of human endothelial cells (hECs), e.g. HUVECs, cardiac tissue ECs (hCECs), pulmonary artery ECs (hPAECs), and iPSC-derived ECs, were co-cultured with human adipose tissue-derived stromal cells (hASCs) within the hydrogel. Analyzed hECs were able to self-assemble and form three-dimensional networks harboring small caliber lumens within the hydrogel constructs in the presence of hASCs as supporting cells. Additionally, microvessel assembling required exogenous growth factor supplementation. This study demonstrates the development of stable vascularized hydrogels applying hASCs as mural cells in combination with various types of hECs, paving the way for the generation of clinically applicable tissue engineered constructs.


Nanoscale Research Letters | 2017

Targeting Endothelial Cells with Multifunctional GaN/Fe Nanoparticles

Tudor Braniste; I. M. Tiginyanu; Tibor Horvath; Simion Raevschi; Birgit Andrée; Serghei Cebotari; Erin C. Boyle; Axel Haverich; Andres Hilfiker

In this paper, we report on the interaction of multifunctional nanoparticles with living endothelial cells. The nanoparticles were synthesized using direct growth of gallium nitride on zinc oxide nanoparticles alloyed with iron oxide followed by core decomposition in hydrogen flow at high temperature. Using transmission electron microscopy, we demonstrate that porcine aortic endothelial cells take up GaN-based nanoparticles suspended in the growth medium. The nanoparticles are deposited in vesicles and the endothelial cells show no sign of cellular damage. Intracellular inert nanoparticles are used as guiding elements for controlled transportation or designed spatial distribution of cells in external magnetic fields.


Tissue Engineering Part B-reviews | 2013

Small intestinal submucosa segments as matrix for tissue engineering: review.

Birgit Andrée; Antonia Bär; Axel Haverich; Andres Hilfiker


Basic Research in Cardiology | 2014

Successful re-endothelialization of a perfusable biological vascularized matrix (BioVaM) for the generation of 3D artificial cardiac tissue

Birgit Andrée; Katharina Bela; Tibor Horvath; Marco Lux; Robert Ramm; Letizia Venturini; Anatol Ciubotaru; Robert Zweigerdt; Axel Haverich; Andres Hilfiker

Collaboration


Dive into the Birgit Andrée's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Lux

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Antonia Bär

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge