Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Dusemund is active.

Publication


Featured researches published by Birgit Dusemund.


Molecular Nutrition & Food Research | 2012

Alkaloids in the human food chain – Natural occurrence and possible adverse effects

I. Koleva; T.A. van Beek; A.E.M.F. Soffers; Birgit Dusemund; Ivonne M. C. M. Rietjens

Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined.


Molecular Nutrition & Food Research | 2010

Safety assessment of botanicals and botanical preparations used as ingredients in food supplements: testing an European Food Safety Authority-tiered approach.

Gerrit Speijers; Bernard Bottex; Birgit Dusemund; Andrea Lugasi; Jaroslav Tóth; Judith Amberg-Müller; C. Galli; Vittorio Silano; Ivonne M. C. M. Rietjens

This article describes results obtained by testing the European Food Safety Authority-tiered guidance approach for safety assessment of botanicals and botanical preparations intended for use in food supplements. Main conclusions emerging are as follows. (i) Botanical ingredients must be identified by their scientific (binomial) name, in most cases down to the subspecies level or lower. (ii) Adequate characterization and description of the botanical parts and preparation methodology used is needed. Safety of a botanical ingredient cannot be assumed only relying on the long-term safe use of other preparations of the same botanical. (iii) Because of possible adulterations, misclassifications, replacements or falsifications, and restorations, establishment of adequate quality control is necessary. (iv) The strength of the evidence underlying concerns over a botanical ingredient should be included in the safety assessment. (v) The matrix effect should be taken into account in the safety assessment on a case-by-case basis. (vi) Adequate data and methods for appropriate exposure assessment are often missing. (vii) Safety regulations concerning toxic contaminants have to be complied with. The application of the guidance approach can result in the conclusion that safety can be presumed, that the botanical ingredient is of safety concern, or that further data are needed to assess safety.


Molecular Nutrition & Food Research | 2017

Phytochemical compounds in sport nutrition: Synephrine and hydroxycitric acid (HCA) as examples for evaluation of possible health risks

Nadiya Bakhiya; Rainer Ziegenhagen; Karen Ildico Hirsch-Ernst; Birgit Dusemund; Klaus Richter; Katharina Schultrich; Sophie Pevny; Bernd Schäfer; Alfonso Lampen

Numerous food supplements contain phytochemical compounds as active ingredients. Although such supplements are often perceived by consumers as being risk-free, the safety of many of them is currently uncertain. The present review provides two examples for risk assessment for phytochemical ingredients that are used in certain supplements marketed for sportspeople-synephrine (extracted from fruits of Citrus aurantium) and hydroxycitric acid (HCA, isolated from fruits of Garcinia cambogia). Animal and human studies, as well as case reports, provide evidence for cardiovascular effects due to ingestion of high synephrine doses, especially in combination with caffeine and physical exertion. A dose of up to 6.7 mg synephrine/day, however, which is equivalent to the median dietary intake from conventional foods in Germany, is presumed to represent a safe intake from supplements. In subchronic animal studies, administration of high doses of certain HCA-containing preparations led to testicular toxicity (i.e., testicular atrophy and impaired spermatogenesis), yielding a no observed adverse effect level of 389 mg HCA/kg bw/day. In view of lack of adequate human data on the safety of HCA preparations, particularly with respect to the human male reproductive system, substantial uncertainties exist regarding the safety of supplements containing high amounts of HCA.


EFSA Journal | 2017

Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age

Anthony Hardy; Diane Benford; Thorhallur Halldorsson; Michael Jeger; Helle Katrine Knutsen; Simon J. More; Hanspeter Naegeli; Hubert Noteborn; Colin Ockleford; Antonia Ricci; Guido Rychen; Josef Schlatter; Vittorio Silano; Roland Solecki; Dominique Turck; Jean-Louis Bresson; Birgit Dusemund; Ursula Gundert‐Remy; Mathilde Kersting; Claude Lambré; André Penninks; Angelika Tritscher; Ine Waalkens‐Berendsen; Ruud Woutersen; Davide Arcella; Daniele Court Marques; Jean Lou Dorne; George E.N. Kass; Alicja Mortensen

Abstract Following a request from the European Commission to EFSA, the EFSA Scientific Committee (SC) prepared a guidance for the risk assessment of substances present in food intended for infants below 16 weeks of age. In its approach to develop this guidance, the EFSA SC took into account, among others, (i) an exposure assessment based on infant formula as the only source of nutrition; (ii) knowledge of organ development in human infants, including the development of the gut, metabolic and excretory capacities, the brain and brain barriers, the immune system, the endocrine and reproductive systems; (iii) the overall toxicological profile of the substance identified through the standard toxicological tests, including critical effects; (iv) the relevance for the human infant of the neonatal experimental animal models used. The EFSA SC notes that during the period from birth up to 16 weeks, infants are expected to be exclusively fed on breast milk and/or infant formula. The EFSA SC views this period as the time where health‐based guidance values for the general population do not apply without further considerations. High infant formula consumption per body weight is derived from 95th percentile consumption. The first weeks of life is the time of the highest relative consumption on a body weight basis. Therefore, when performing an exposure assessment, the EFSA SC proposes to use the high consumption value of 260 mL/kg bw per day. A decision tree approach is proposed that enables a risk assessment of substances present in food intended for infants below 16 weeks of age. The additional information needed when testing substances present in food for infants below 16 weeks of age and the approach to be taken for the risk assessment are on a case‐by‐case basis, depending on whether the substance is added intentionally to food and is systemically available.


EFSA Journal | 2017

Re‐evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400–E 404) as food additives

Maged Younes; Peter Aggett; Fernando Aguilar; Riccardo Crebelli; Metka Filipič; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert‐Remy; Gunter Georg Kuhnle; Claude Lambré; Jean-Charles Leblanc; Inger Therese Lillegaard; Peter Moldeus; Alicja Mortensen; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Leon Brimer; Oliver Lindtner; Pasquale Mosesso; Anna Christodoulidou; Zsuzsanna Horvath; Federica Lodi; Birgit Dusemund

Abstract The present opinion deals with the re‐evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E 400–E 404) when used as food additives. Alginic acid and its salts (E 400–E 404) are authorised food additives in the EU in accordance with Annex II and Annex III to Regulation (EC) No 1333/2008. Following the conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010, the Panel concluded that there was no need for a numerical Acceptable Daily Intake (ADI) for alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404), and that there was no safety concern at the level of the refined exposure assessment for the reported uses of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) as food additives. The Panel further concluded that exposure of infants and young children to alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) by the use of these food additives should stay below therapeutic dosages for these population groups at which side‐effects could occur. Concerning the use of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) in ‘dietary foods for special medical purposes and special formulae for infants’ (Food category 13.1.5.1) and ‘in dietary foods for babies and young children for special medical purposes as defined in Directive 1999/21/EC’ (Food category 13.1.5.2), the Panel further concluded that the available data did not allow an adequate assessment of the safety of alginic acid and its salts (E 400, E 401, E 402, E 403 and E 404) in infants and young children consuming the food belonging to the categories 13.1.5.1 and 13.1.5.2.


EFSA Journal | 2017

Re‐evaluation of guar gum (E 412) as a food additive

Alicja Mortensen; Fernando Aguilar; Riccardo Crebelli; Alessandro Di Domenico; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert‐Remy; Claude Lambré; Jean-Charles Leblanc; Oliver Lindtner; Peter Moldeus; Pasquale Mosesso; Agneta Oskarsson; Dominique Parent‐Massin; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Maged Younes; Leon Brimer; Paul Peters; Jacqueline Wiesner; Anna Christodoulidou; Federica Lodi; Alexandra Tard; Birgit Dusemund

Abstract The Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re‐evaluating the safety of guar gum (E 412) as a food additive. In the EU, guar gum was evaluated by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1970, 1974 and 1975, who allocated an acceptable daily intake (ADI) ‘not specified’. Guar gum has been also evaluated by the Scientific Committee for Food (SCF) in 1977 who endorsed the ADI ‘not specified’ allocated by JECFA. Following the conceptual framework for the risk assessment of certain food additives re‐evaluated under Commission Regulation (EU) No 257/2010, the Panel considered that adequate exposure and toxicity data were available. Guar gum is practically undigested, not absorbed intact, but significantly fermented by enteric bacteria in humans. No adverse effects were reported in subchronic and carcinogenicity studies at the highest dose tested; no concern with respect to the genotoxicity. Oral intake of guar gum was well tolerated in adults. The Panel concluded that there is no need for a numerical ADI for guar gum (E 412), and there is no safety concern for the general population at the refined exposure assessment of guar gum (E 412) as a food additive. The Panel considered that for uses of guar gum in foods intended for infants and young children the occurrence of abdominal discomfort should be monitored and if this effect is observed doses should be identified as a basis for further risk assessment. The Panel considered that no adequate specific studies addressing the safety of use of guar gum (E 412) in food categories 13.1.5.1 and 13.1.5.2 were available. Therefore, the Panel concluded that the available data do not allow an adequate assessment of the safety of guar gum (E 412) in infants and young children consuming these foods for special medical purposes.


EFSA Journal | 2017

Re‐evaluation of glycerol (E 422) as a food additive

Alicja Mortensen; Fernando Aguilar; Riccardo Crebelli; Alessandro Di Domenico; Birgit Dusemund; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert‐Remy; Jean-Charles Leblanc; Oliver Lindtner; Peter Moldeus; Pasquale Mosesso; Dominique Parent‐Massin; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; Maged Younes; P.E. Boon; Dimitrios Chrysafidis; Rainer Gürtler; Paul Tobback; Ana Maria Rincon; Alexandra Tard; Claude Lambré

Abstract The ANS Panel provides a scientific opinion re‐evaluating the safety of glycerol (E 422) used as a food additive. In 1981, the Scientific Committee on Food (SCF) endorsed the conclusion from the Joint FAO/WHO Expert Committee on Food Additives (JECFA) in 1976 of ‘acceptable daily intake (ADI) for man not specified’. The Panel concluded that glycerol has low acute toxicity and that local irritating effects of glycerol in the gastrointestinal tract reported in some gavage studies was likely due to hygroscopic and osmotic effects of glycerol. Glycerol did not raise concern with respect to genotoxicity and was of no concern with regard to carcinogenicity. Reproductive and prenatal developmental studies were limited to conclude on reproductive toxicity but no dose‐related adverse effects were reported. None of the animal studies available identified an adverse effect for glycerol. The Panel conservatively estimated the lowest oral dose of glycerol required for therapeutic effect to be 125 mg/kg bw per hour and noted that infants and toddlers can be exposed to that dose by drinking less than the volume of one can (330 mL) of a flavoured drink. The Panel concluded that there is no need for a numerical ADI and no safety concern regarding the use of glycerol (E 422) as a food additive at the refined exposure assessment for the reported uses. The Panel also concluded that the manufacturing process of glycerol should not allow the production of a food additive, which contains genotoxic and carcinogenic residuals at a level which would result in a margin of exposure below 10,000. The Panel recommended modification of the EU specifications for E 422. The Panel also recommended that more information on uses and use levels and analytical data should be made available to the Panel.


Chemical contaminants and residues in food | 2012

Plant-derived contaminants in food

Birgit Dusemund; A.E.M.F. Soffers; Ivonne M. C. M. Rietjens

Abstract: This chapter focuses on plant-derived compounds present as contaminants in the modern food chain, describing their mode of action and adverse effects. Some of these contaminants, including the pyrrolizidine alkaloids and ethyl carbamate, may be of concern because of their genotoxic or carcinogenic properties. These compounds generally require bioactivation to a metabolite that forms DNA adducts and may result in tumor formation. Other contaminants, including tropane alkaloids, opium alkaloids, grayanotoxins and delta-9-tetrahydrocannabinol, exert toxicity by a mechanism that is considered thresholded. It can be concluded that our modern food chain may contain plant-derived contaminants of concern that point to a need for adequate regulation and quality control.


Food and Chemical Toxicology | 2018

Risk assessment of pyrrolizidine alkaloids in food of plant and animal origin

Birgit Dusemund; Nicole Nowak; Christine Sommerfeld; Oliver Lindtner; Bernd Schäfer; Alfonso Lampen

Acute liver toxicity, specifically in the form of hepatic veno-occlusive disease (HVOD), is known from reports on human poisonings following ingestions of 1,2-unsaturated pyrrolizidine alkaloids (PAs) containing herbs. Recently PA exposure via common foods contaminated via PA-producing plants raised concern, especially regarding the potential of genotoxicity and carcinogenicity. The health risks related to the estimated exposures to PAs from food were assessed. With respect to common foods, herbal teas and teas are the main sources through which consumers can be exposed to PAs. For high long-term consumption of these foods a possible health concern has been revealed in the assessment of chronic risks referring to a BMDL10 of 237 μg/kg bw per day recently established by EFSA based on model averaging for data on riddelliine. However, acute health damage from acute or short-term intake of PAs via common food is considered to be unlikely. Food supplements on the basis of PA-producing plants may significantly contribute to PA exposures and their intake is associated with risks of acute and chronic toxicity. However, no health risks have to be expected from the consumption of food supplements based on oil-based preparations of PA-producing plants, which were described to be free of PAs.


EFSA Journal | 2018

Re‐evaluation of propane‐1,2‐diol (E 1520) as a food additive

Maged Younes; Peter Aggett; Fernando Aguilar; Riccardo Crebelli; Birgit Dusemund; Metka Filipič; Maria Jose Frutos; Pierre Galtier; David Gott; Ursula Gundert-Remy; Gunter Georg Kuhnle; Jean-Charles Leblanc; Inger Therese Lillegaard; Peter Moldeus; Alicja Mortensen; Agneta Oskarsson; Ivan Stankovic; Ine Waalkens‐Berendsen; Rudolf Antonius Woutersen; Matthew Wright; P.E. Boon; Dimitrios Chrysafidis; Rainer Gürtler; Pasquale Mosesso; Dominique Parent‐Massin; Paul Tobback; Ana Maria Rincon; Alexandra Tard; Claude Lambré

Abstract The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re‐evaluating the safety of propane‐1,2‐diol (E 1520) when used as a food additive. In 1996, the Scientific Committee on Food (SCF) established an acceptable daily intake (ADI) of 25 mg/kg body weight (bw) per day for propane‐1,2‐diol. Propane‐1,2‐diol is readily absorbed from the gastrointestinal and is expected to be widely distributed to organs and tissues. The major route of metabolism is oxidation to lactic acid and pyruvic acid. At high concentrations, free propane‐1,2‐diol is excreted in the urine. No treatment‐related effects were observed in subchronic toxicity studies. The available data did not raise concern with respect to genotoxicity. Haematological changes suggestive of an increased red blood cell destruction with a compensatory increased rate of haematopoiesis were observed at the highest dose level (5,000 mg/kg bw per day) in a 2‐year study in dogs. No adverse effects were reported in a 2‐year chronic study in rats with propane‐1,2‐diol (up to 2,500 mg/kg bw per day). The SCF used this study to derive the ADI. No adverse effects were observed in the available reproductive and developmental toxicity studies. Propane‐1,2‐diol (E 1520) is authorised according to Annex III in some food additives, food flavourings, enzymes and nutrients and it is then carried over to the final food. Dietary exposure to E 1520 was assessed based on the use levels and analytical data. The Panel considered that for the food categories for which information was available, the exposure was likely to be overestimated. Considering the toxicity database, the Panel concluded that there was no reason to revise the current ADI of 25 mg/kg bw per day. The Panel also concluded that the mean and the high exposure levels (P95) of the brand‐loyal refined exposure scenario did not exceed the ADI in any of the population groups from the use of propane‐1,2‐diol (E 1520) at the reported use levels and analytical results.

Collaboration


Dive into the Birgit Dusemund's collaboration.

Top Co-Authors

Avatar

David Gott

European Food Safety Authority

View shared research outputs
Top Co-Authors

Avatar

Pierre Galtier

European Food Safety Authority

View shared research outputs
Top Co-Authors

Avatar

Fernando Aguilar

European Food Safety Authority

View shared research outputs
Top Co-Authors

Avatar

Jean-Charles Leblanc

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Moldeus

European Food Safety Authority

View shared research outputs
Top Co-Authors

Avatar

Riccardo Crebelli

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Agneta Oskarsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Maged Younes

World Health Organization

View shared research outputs
Researchain Logo
Decentralizing Knowledge