Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit E. Scharf is active.

Publication


Featured researches published by Birgit E. Scharf.


Journal of Bacteriology | 2000

VisN and VisR Are Global Regulators of Chemotaxis, Flagellar, and Motility Genes in Sinorhizobium (Rhizobium) meliloti

Victor Sourjik; Paul Muschler; Birgit E. Scharf; Rüdiger Schmitt

The known 41 flagellar, chemotaxis, and motility genes of Sinorhizobium (Rhizobium) meliloti contained in the flagellar regulon are organized as seven operons and six transcription units that map to a contiguous 45-kb chromosomal region. By probing gene expression on Western blots and with lacZ fusions, we have identified two master regulatory genes, visN and visR, contained in one operon. The gene products probably form a heterodimer, VisNR, acting as a global transcription activator of other flagellar genes. The related 27-kDa VisN and VisR proteins are LuxR-type proteins with typical ligand- and DNA-binding domains. The vis operon itself is constitutively transcribed; however, to activate flagellar genes, VisNR seemingly requires the binding of a yet-unknown effector. Gene expression in tester strains with known deficiencies revealed a hierarchy of three classes of flagellar genes: class I comprises visN and visR; class II, controlled by VisNR, comprises flagellar assembly (class IIA) and motor (class IIB) genes; and class III comprises flagellin and chemotaxis genes that require functional class I and class IIA genes for expression. In contrast to their enterobacterial counterparts, mot genes belong to class II without exerting control over class III genes. While the general hierarchy of gene expression resembles the enterobacterial scheme, the assignment of mot genes to class IIB and the global control by a LuxR-type VisNR activator are new features distinguishing the S. meliloti flagellar gene system.


Journal of Biotechnology | 2011

Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid

Daniel Wibberg; Jochen Blom; Sebastian Jaenicke; Florian Kollin; Oliver Rupp; Birgit E. Scharf; Susanne Schneiker-Bekel; Rafael Sczcepanowski; Alexander Goesmann; João C. Setubal; Rüdiger Schmitt; Alfred Pühler; Andreas Schlüter

Agrobacterium sp. H13-3, formerly known as Rhizobium lupini H13-3, is a soil bacterium that was isolated from the rhizosphere of Lupinus luteus. The isolate has been established as a model system for studying novel features of flagellum structure, motility and chemotaxis within the family Rhizobiaceae. The complete genome sequence of Agrobacterium sp. H13-3 has been established and the genome structure and phylogenetic assignment of the organism was analysed. For de novo sequencing of the Agrobacterium sp. H13-3 genome, a combined strategy comprising 454-pyrosequencing on the Genome Sequencer FLX platform and PCR-based amplicon sequencing for gap closure was applied. The finished genome consists of three replicons and comprises 5,573,770 bases. Based on phylogenetic analyses, the isolate could be assigned to the genus Agrobacterium biovar I and represents a genomic species G1 strain within this biovariety. The highly conserved circular chromosome (2.82 Mb) of Agrobacterium sp. H13-3 mainly encodes housekeeping functions characteristic for an aerobic, heterotrophic bacterium. Agrobacterium sp. H13-3 is a motile bacterium driven by the rotation of several complex flagella. Its behaviour towards external stimuli is regulated by a large chemotaxis regulon and a total of 17 chemoreceptors. Comparable to the genome of Agrobacterium tumefaciens C58, Agrobacterium sp. H13-3 possesses a linear chromosome (2.15 Mb) that is related to its reference replicon and features chromosomal and plasmid-like properties. The accessory plasmid pAspH13-3a (0.6 Mb) is only distantly related to the plasmid pAtC58 of A. tumefaciens C58 and shows a mosaic structure. A tumor-inducing Ti-plasmid is missing in the sequenced strain H13-3 indicating that it is a non-virulent isolate.


Protist | 2004

The Bacterial Paromomycin Resistance Gene, aphH, as a Dominant Selectable Marker in Volvox carteri

Thomas Jakobiak; Wolfgang Mages; Birgit E. Scharf; Patrick Babinger; Klaus Stark; Rüdiger Schmitt

The aminoglycoside antibiotic paromomycin that is highly toxic to the green alga Volvox carteri is efficiently inactivated by aminoglycoside 3-phosphotransferase from Streptomyces rimosus. Therefore, we made constructs in which the bacterial aphH gene encoding this enzyme was combined with Volvox cis-regulatory elements in an attempt to develop a new dominant selectable marker--paromomycin resistance (PmR)--for use in Volvox nuclear transformation. The construct that provided the most efficient transformation was one in which aphH was placed between a chimeric promoter that was generated by fusing the Volvox hsp70 and rbcS3 promoters and the 3 UTR of the Volvox rbcS3 gene. When this plasmid was used in combination with a high-impact biolistic device, the frequency of stable PmR transformants ranged about 15 per 106 target cells. Due to rapid and sharp selection, PmR transformants were readily isolated after six days, which is half the time required for previously used markers. Co-transformation of an unselected marker ranged about 30%. The chimeric aphH gene was stably integrated into the Volvox genome, frequently as tandem multiple copies, and was expressed at a level that made selection of PmR transformants simple and unambiguous. This makes the engineered bacterial aphH gene an efficient dominant selection marker for the transformation and co-transformation of a broad range of V. carteri strains without the recurring need for using auxotrophic recipient strains.


FEBS Letters | 1996

Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis

Martin Engelhard; Birgit E. Scharf; Fritz Siebert

The Fourier Transform Infrared (FTIR) spectra of photocycle intermediates of sensory rhodopsin II (pSRII) from Natronobacterium pharaonis were measured. The results of the FTIR experiments indicate considerable conformational movements of pSRII already at the stage of the early K‐like intermediate which persist at least during the lifetime of the long lived intermediate. These changes in the amide bond region are more intense than those described for sensory rhodopsin I (SRI) and are quite similar to those observed for rhodopsin. Concomitantly with the deprotonation of the Schiff base a carboxyl group located in a hydrophobic environment is protonated. In analogy to bacteriorhodopsin, this carboxyl group might arise from Asp‐75 which probably serves as counter ion to the Schiff base. The protonation reaction differs from the situation observed in SRI where the protonation is pH independent over the range of pH 5–8.


Molecular Microbiology | 2008

FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella enterica

Ursula Attmannspacher; Birgit E. Scharf; Rasika M. Harshey

fliL is the first gene in a flagellar operon that specifies members of the switch complex and type III export system in Salmonella enterica and Escherichia coli, but no function has been ascribed to this gene thus far. Here we report that a fliL mutant is slightly impaired for swimming but completely defective in swarming in both organisms, and have studied this phenotype further in S.u2003enterica. We have found that on swarm agar, mutant cells release or ‘eject’ their flagellar filaments. The released filaments are attached to the hook and part of the rod structure; we have identified the distal rod protein FlgG but not the proximal rod protein FlgF in these filaments. Rod fracture was not observed if flagellar rotation was prevented by removal of proteins that supply proton flow through the motor. Based on these and other results, we propose that motors experience a higher torque on swarm agar owing to an increased proton motive force, and that FliL allows the rod to withstand the increased torsional stress. The flagella‐release phenotype of the S.u2003enterica fliL mutant has a bearing on FliL‐dependent flagellar ejection during the swimmer‐ to stalk‐cell transition in the developmental cycle of Caulobacter crescentus.


Journal of Bacteriology | 2001

Mutational Analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti Flagellin Genes: Importance of Flagellin A for Flagellar Filament Structure and Transcriptional Regulation

Birgit E. Scharf; Henriette Schuster-Wolff-Bühring; Reinhard Rachel; Rüdiger Schmitt

Complex flagellar filaments are unusual in their fine structure composed of flagellin dimers, in their right-handed helicity, and in their rigidity, which prevents a switch of handedness. The complex filaments of Rhizobium lupini H13-3 and those of Sinorhizobium meliloti are composed of three and four flagellin (Fla) subunits, respectively. The Fla-encoding genes, named flaA through flaD, are separately transcribed from sigma(28)-specific promoters. Mutational analysis of the fla genes revealed that, in both species, FlaA is the principal flagellin and that FlaB, FlaC, and FlaD are secondary. FlaA and at least one secondary Fla protein are required for assembling a functional flagellar filament. Western analysis revealed a ratio close to 1 of FlaA to the secondary Fla proteins (= FlaX) present in wild-type extracts, suggesting that the complex filament is assembled from FlaA-FlaX heterodimers. Whenever a given mutant combination of Fla prevented the assemblage of an intact filament, the biosynthesis of flagellin decreased dramatically. As shown in S. meliloti by reporter gene analysis, it is the transcription of flaA, but not of flaB, flaC, or flaD, that was down-regulated by such abortive combinations of Fla proteins. This autoregulation of flaA is unusual. We propose that any combination of Fla subunits incapable of assembling an intact filament jams the flagellar export channel and thus prevents the escape of an (as yet unidentified) anti-sigma(28) factor that antagonizes the sigma(28)-dependent transcription of flaA.


Journal of Bacteriology | 2002

Real-Time Imaging of Fluorescent Flagellar Filaments of Rhizobium lupini H13-3: Flagellar Rotation and pH-Induced Polymorphic Transitions

Birgit E. Scharf

The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30 degrees, a pitch of 1.36 micro m, and a helical diameter of 0.50 micro m. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations.


Journal of Bacteriology | 2007

Functional analysis of nine putative chemoreceptor proteins in Sinorhizobium meliloti.

Veronika M. Meier; Paul Muschler; Birgit E. Scharf

The genome of the symbiotic soil bacterium Sinorhizobium meliloti contains eight genes coding for methyl-accepting chemotaxis proteins (MCPs) McpS to McpZ and one gene coding for a transducer-like protein, IcpA. Seven of the MCPs are localized in the cytoplasmic membrane via two membrane-spanning regions, whereas McpY and IcpA lack such hydrophobic regions. The periplasmic regions of McpU, McpV, and McpX contain the small-ligand-binding domain Cache. In addition, McpU possesses the ligand-binding domain TarH. By probing gene expression with lacZ fusions, we have identified mcpU and mcpX as being highly expressed. Deletion of any one of the receptor genes caused impairments in the chemotactic response toward most organic acids, amino acids, and sugars in a swarm plate assay. The data imply that chemoreceptor proteins in S. meliloti can sense more than one class of carbon source and suggest that many or all receptors work as an ensemble. Tactic responses were virtually eliminated for a strain lacking all nine receptor genes. Capillary assays revealed three important sensors for the strong attractant proline: McpU, McpX, and McpY. Receptor deletions variously affected free-swimming speed and attractant-induced chemokinesis. Noticeably, cells lacking mcpU were swimming 9% slower than the wild-type control. We infer that McpU inhibits the kinase activity of CheA in the absence of an attractant. Cells lacking one of the two soluble receptors were impaired in chemokinetic proficiency by more than 50%. We propose that the internal sensors, IcpA and the PAS domain containing McpY, monitor the metabolic state of S. meliloti.


Applied and Environmental Microbiology | 2014

Sinorhizobium meliloti Chemoreceptor McpU Mediates Chemotaxis toward Host Plant Exudates through Direct Proline Sensing

Benjamin A. Webb; Sherry B. Hildreth; Richard F. Helm; Birgit E. Scharf

ABSTRACT Bacterial chemotaxis is an important attribute that aids in establishing symbiosis between rhizobia and their legume hosts. Plant roots and seeds exude a spectrum of molecules into the soil to attract their bacterial symbionts. The alfalfa symbiont Sinorhizobium meliloti possesses eight chemoreceptors to sense its environment and mediate chemotaxis toward its host. The methyl accepting chemotaxis protein McpU is one of the more abundant S. meliloti chemoreceptors and an important sensor for the potent attractant proline. We established a dominant role of McpU in sensing molecules exuded by alfalfa seeds. Mass spectrometry analysis determined that a single germinating seed exudes 3.72 nmol of proline, producing a millimolar concentration near the seed surface which can be detected by the chemosensory system of S. meliloti. Complementation analysis of the mcpU deletion strain verified McpU as the key proline sensor. A structure-based homology search identified tandem Cache (calcium channels and chemotaxis receptors) domains in the periplasmic region of McpU. Conserved residues Asp-155 and Asp-182 of the N-terminal Cache domain were determined to be important for proline sensing by evaluating mutant strains in capillary and swim plate assays. Differential scanning fluorimetry revealed interaction of the isolated periplasmic region of McpU (McpU40-284) with proline and the importance of Asp-182 in this interaction. Using isothermal titration calorimetry, we determined that proline binds with a Kd (dissociation constant) of 104 μM to McpU40-284, while binding was abolished when Asp-182 was substituted by Glu. Our results show that McpU is mediating chemotaxis toward host plants by direct proline sensing.


Plant Molecular Biology | 2016

Chemotaxis signaling systems in model beneficial plant–bacteria associations

Birgit E. Scharf; Michael F. Hynes; Gladys Alexandre

Beneficial plant–microbe associations play critical roles in plant health. Bacterial chemotaxis provides a competitive advantage to motile flagellated bacteria in colonization of plant root surfaces, which is a prerequisite for the establishment of beneficial associations. Chemotaxis signaling enables motile soil bacteria to sense and respond to gradients of chemical compounds released by plant roots. This process allows bacteria to actively swim towards plant roots and is thus critical for competitive root surface colonization. The complete genome sequences of several plant-associated bacterial species indicate the presence of multiple chemotaxis systems and a large number of chemoreceptors. Further, most soil bacteria are motile and capable of chemotaxis, and chemotaxis-encoding genes are enriched in the bacteria found in the rhizosphere compared to the bulk soil. This review compares the architecture and diversity of chemotaxis signaling systems in model beneficial plant-associated bacteria and discusses their relevance to the rhizosphere lifestyle. While it is unclear how controlling chemotaxis via multiple parallel chemotaxis systems provides a competitive advantage to certain bacterial species, the presence of a larger number of chemoreceptors is likely to contribute to the ability of motile bacteria to survive in the soil and to compete for root surface colonization.

Collaboration


Dive into the Birgit E. Scharf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hubert Riepl

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge