Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Knoechel is active.

Publication


Featured researches published by Birgit Knoechel.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

Jens Lohr; Petar Stojanov; Michael S. Lawrence; Daniel Auclair; Bjoern Chapuy; Carrie Sougnez; Peter Cruz-Gordillo; Birgit Knoechel; Yan W. Asmann; Susan L. Slager; Anne J. Novak; Ahmet Dogan; Stephen M. Ansell; Brian K. Link; Lihua Zou; Joshua Gould; Gordon Saksena; Nicolas Stransky; Claudia Rangel-Escareño; Juan Carlos Fernández-López; Alfredo Hidalgo-Miranda; Jorge Melendez-Zajgla; Enrique Hernández-Lemus; Angela Schwarz-Cruz y Celis; Ivan Imaz-Rosshandler; Akinyemi I. Ojesina; Joonil Jung; Chandra Sekhar Pedamallu; Eric S. Lander; Thomas M. Habermann

To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease.


Cancer Cell | 2014

Widespread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy

Jens Lohr; Petar Stojanov; Scott L. Carter; Peter Cruz-Gordillo; Michael S. Lawrence; Daniel Auclair; Carrie Sougnez; Birgit Knoechel; Joshua Gould; Gordon Saksena; Kristian Cibulskis; Aaron McKenna; Michael Chapman; Ravid Straussman; Joan Levy; Louise M. Perkins; Jonathan J. Keats; Steven E. Schumacher; Mara Rosenberg; Kenneth C. Anderson; Paul G. Richardson; Amrita Krishnan; Sagar Lonial; Jonathan L. Kaufman; David Siegel; David H. Vesole; Vivek Roy; Candido E. Rivera; S. Vincent Rajkumar; Shaji Kumar

We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations and discovered putative tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions.


Journal of Experimental Medicine | 2005

Sequential development of interleukin 2–dependent effector and regulatory T cells in response to endogenous systemic antigen

Birgit Knoechel; Jens Lohr; Estelle Kahn; Jeffrey A. Bluestone; Abul K. Abbas

Transfer of naive antigen-specific CD4+ T cells into lymphopenic mice that express an endogenous antigen as a systemic, secreted protein results in severe autoimmunity resembling graft-versus-host disease. T cells that respond to this endogenous antigen develop into effector cells that cause the disease. Recovery from this disease is associated with the subsequent generation of FoxP3+CD25+ regulatory cells in the periphery. Both pathogenic effector cells and protective regulatory cells develop from the same antigen-specific T cell population after activation, and their generation may occur in parallel or sequentially. Interleukin (IL)-2 plays a dual role in this systemic T cell reaction. In the absence of IL-2, the acute disease is mild because of reduced T cell effector function, but a chronic and progressive disease develops late and is associated with a failure to generate FoxP3+ regulatory T (T reg) cells in the periphery. Thus, a peripheral T cell reaction to a systemic antigen goes through a phase of effector cell–mediated pathology followed by T reg cell–mediated recovery, and both require the growth factor IL-2.


Journal of Experimental Medicine | 2006

Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease

Jens Lohr; Birgit Knoechel; Jing Jing Wang; Alejandro V. Villarino; Abul K. Abbas

To explore the interactions between regulatory T cells and pathogenic effector cytokines, we have developed a model of a T cell–mediated systemic autoimmune disorder resembling graft-versus-host disease. The cytokine responsible for tissue inflammation in this disorder is interleukin (IL)-17, whereas interferon (IFN)-γ produced by Th1 cells has a protective effect in this setting. Because of the interest in potential therapeutic approaches utilizing transfer of regulatory T cells and inhibition of the IL-2 pathway, we have explored the roles of these in the systemic disease. We demonstrate that the production of IL-17 and tissue infiltration by IL-17–producing cells occur and are even enhanced in the absence of IL-2. Regulatory T cells favor IL-17 production but prevent the disease when administered early in the course by suppressing expansion of T cells. Thus, the pathogenic or protective effects of cytokines and the therapeutic capacity of regulatory T cells are crucially dependent on the timing and the nature of the disease.


Immunological Reviews | 2006

Regulatory T cells in the periphery

Jens Lohr; Birgit Knoechel; Abul K. Abbas

Summary:  Recognition of a systemic antigen by CD4+ T cells in a lymphopenic host leads to the sequential generation of pathogenic effector cells and protective CD25+ forkhead box protein (Foxp3+) regulatory T cells (Tregs) in the periphery. Such an experimental model is potentially valuable for defining the stimuli that determine the balance of effector and regulatory T cells. Our studies have shown that interleukin‐2 (IL‐2) enhances the development of effector cells and is essential for the peripheral generation of regulatory cells. Other models of peripheral Treg generation suggest that the concentration of antigen, the nature of the antigen‐presenting cells, and cytokines such as transforming growth factor‐β and IL‐10 may all influence the peripheral generation of Tregs.


Nature Immunology | 2003

The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens.

Jens Lohr; Birgit Knoechel; Shuwei Jiang; Arlene H. Sharpe; Abul K. Abbas

When antigen-presenting cells (APCs) encounter inflammatory stimuli, they up-regulate their expression of B7. A small amount of B7 is also constitutively expressed on resting APCs, but its function is unclear. Here we show that initiation of T cell responses requires the expression of B7 on immunizing APCs, but the responses are much greater in the absence of basal B7 expression. Transfer of antigen-specific CD4+CD25+ cells reverses the increased responsiveness, and tolerance to a self-protein is broken by immunization in the absence of basal B7, thereby inducing autoimmunity. Similar loss of self-tolerance is seen on depletion of CD25+ cells. Thus, constitutively expressed B7 costimulators function to suppress T cell activation and maintain self-tolerance, principally by sustaining a population of regulatory T cells.


Journal of Immunology | 2004

IL-2 Induces a Competitive Survival Advantage in T Lymphocytes

Hans Dooms; Estelle Kahn; Birgit Knoechel; Abul K. Abbas

The acquisition of long-term survival potential by activated T lymphocytes is essential to ensure the successful development of a memory population in the competitive environment of the lymphoid system. The factors that grant competitiveness for survival to primed T cells are poorly defined. We examined the role of IL-2 signals during priming of CD4+ T cells in the induction of a long-lasting survival program. We show that Ag-induced cycling of CD4+ IL-2−/− T cells is independent of IL-2 in vitro. However, IL-2−/− T cells failed to accumulate in large numbers and develop in effector cells when primed in the absence of IL-2. More importantly, Ag-activated IL-2−/− T cells were unable to survive for prolonged periods of time after adoptive transfer in unmanipulated, syngeneic mice. IL-2−/− T cells exposed to IL-2 signals during priming, however, acquired a robust and long-lasting survival advantage over cells that cycled in the absence of IL-2. Interestingly, this IL-2-induced survival program was required for long-term persistence of primed IL-2−/− T cells in an intact lymphoid compartment, but was unnecessary in a lymphopenic environment. Therefore, IL-2 enhances competitiveness for survival in CD4+ T cells, thereby facilitating the development of a memory population.


Cancer Cell | 2014

EWS-FLI1 Utilizes Divergent Chromatin Remodeling Mechanisms to Directly Activate or Repress Enhancer Elements in Ewing Sarcoma

Nicolo Riggi; Birgit Knoechel; Shawn M. Gillespie; Esther Rheinbay; Gaylor Boulay; Mario L. Suvà; Nikki Rossetti; Wannaporn E. Boonseng; Ozgur Oksuz; Edward B. Cook; Aurélie Formey; Anoop P. Patel; Melissa Gymrek; Vishal Thapar; Vikram Deshpande; David T. Ting; Francis J. Hornicek; G. Petur Nielsen; Ivan Stamenkovic; Martin J. Aryee; Bradley E. Bernstein; Miguel Rivera

The aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation.


Journal of Immunology | 2004

Role of B7 in T Cell Tolerance

Jens Lohr; Birgit Knoechel; Estelle Kahn; Abul K. Abbas

The induction of effective immune responses requires costimulation by B7 molecules, and Ag recognition without B7 is thought to result in no response or tolerance. We compared T cell responses in vivo to the same Ag presented either by mature dendritic cells (DCs) or as self, in the presence or absence of B7. We show that Ag presentation by mature B7-1/2-deficient DCs fails to elicit an effector T cell response but does not induce tolerance. In contrast, using a newly developed adoptive transfer system, we show that naive OVA-specific DO11 CD4+ T cells become anergic upon encounter with a soluble form of OVA, in the presence or absence of B7. However, tolerance in DO11 cells transferred into soluble OVA transgenic recipients can be broken by immunization with Ag-pulsed DCs only in B7-deficient mice and not in wild-type mice, suggesting a role of B7 in maintaining tolerance in the presence of strong immunogenic signals. Comparing two double-transgenic models—expressing either a soluble or a tissue Ag—we further show that B7 is not only essential for the active induction of regulatory T cells in the thymus, but also for their maintenance in the periphery. Thus, the obligatory role of B7 molecules paradoxically is to promote effective T cell priming and contain effector responses when self-Ags are presented as foreign.


Immunological Reviews | 2005

T-cell tolerance and autoimmunity to systemic and tissue-restricted self-antigens.

Jens Lohr; Birgit Knoechel; Vijaya Nagabhushanam; Abul K. Abbas

Summary:  We have used transgenic mouse models to examine the mechanisms of tolerance in CD4+ T lymphocytes to soluble, systemic and cell‐associated, tissue‐restricted self‐antigens. Anergy to an islet antigen, as a model of a tissue antigen, is dependent on the inhibitory receptor cytotoxic T‐lymphocyte antigen‐4 (CTLA‐4), and tissue‐restricted autoimmunity is inhibited by regulatory T lymphocytes. Anergy to a circulating systemic antigen can occur independently of CTLA‐4 signals, and it is induced primarily by a block in proximal receptor‐initiated signals. CD4+CD25+ regulatory T cells are generated in response to both forms of self‐antigens, but the induction is much more efficient with the tissue antigen. Receptor desensitization can be induced by the systemic antigen even in the absence of regulatory T cells, but tolerance can be broken by immunization much more easily if these cells are absent. Deletion of mature T cells is striking with the systemic antigen; there is little evidence to support peripheral deletion as a mechanism of tolerance to the tissue antigen. Thus, both distinct and overlapping mechanisms account for unresponsiveness to different forms of self‐antigens. These results establish a foundation for searching for genetic influences and pathogenic mechanisms in organ‐specific and systemic autoimmune diseases.

Collaboration


Dive into the Birgit Knoechel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abul K. Abbas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Estelle Kahn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongfang Wang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge