Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Koch is active.

Publication


Featured researches published by Birgit Koch.


Nature | 2008

Cohesin mediates transcriptional insulation by CCCTC-binding factor

Kerstin S. Wendt; Keisuke Yoshida; Takehiko Itoh; Masashige Bando; Birgit Koch; Erika Schirghuber; Shuichi Tsutsumi; Genta Nagae; Ko Ishihara; Tsuyoshi Mishiro; Kazuhide Yahata; Fumio Imamoto; Hiroyuki Aburatani; Mitsuyoshi Nakao; Naoko Imamoto; Kazuhiro Maeshima; Katsuhiko Shirahige; Jan-Michael Peters

Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to ‘cohesinopathies’ such as Cornelia de Lange syndrome.


PLOS Biology | 2005

Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2.

Silke Hauf; Elisabeth Roitinger; Birgit Koch; Christina M Dittrich; Karl Mechtler; Jan-Michael Peters

Cohesin is a protein complex that is required to hold sister chromatids together. Cleavage of the Scc1 subunit of cohesin by the protease separase releases the complex from chromosomes and thereby enables the separation of sister chromatids in anaphase. In vertebrate cells, the bulk of cohesin dissociates from chromosome arms already during prophase and prometaphase without cleavage of Scc1. Polo-like kinase 1 (Plk1) and Aurora-B are required for this dissociation process, and Plk1 can phosphorylate the cohesin subunits Scc1 and SA2 in vitro, consistent with the possibility that cohesin phosphorylation by Plk1 triggers the dissociation of cohesin from chromosome arms. However, this hypothesis has not been tested yet, and in budding yeast it has been found that phosphorylation of Scc1 by the Polo-like kinase Cdc5 enhances the cleavability of cohesin, but does not lead to separase-independent dissociation of cohesin from chromosomes. To address the functional significance of cohesin phosphorylation in human cells, we have searched for phosphorylation sites on all four subunits of cohesin by mass spectrometry. We have identified numerous mitosis-specific sites on Scc1 and SA2, mutated them, and expressed nonphosphorylatable forms of both proteins stably at physiological levels in human cells. The analysis of these cells lines, in conjunction with biochemical experiments in vitro, indicate that Scc1 phosphorylation is dispensable for cohesin dissociation from chromosomes in early mitosis but enhances the cleavability of Scc1 by separase. In contrast, our data reveal that phosphorylation of SA2 is essential for cohesin dissociation during prophase and prometaphase, but is not required for cohesin cleavage by separase. The similarity of the phenotype obtained after expression of nonphosphorylatable SA2 in human cells to that seen after the depletion of Plk1 suggests that SA2 is the critical target of Plk1 in the cohesin dissociation pathway.


Journal of Cell Science | 2004

Distinct functions of condensin I and II in mitotic chromosome assembly

Toru Hirota; Daniel W. Gerlich; Birgit Koch; Jan Ellenberg; Jan-Michael Peters

Condensin is a protein complex associated with mitotic chromosomes that has been implicated in chromosome condensation. In vertebrates, two types of condensin complexes have recently been identified, called condensin I and II. Here, we show that in mammalian cells condensin II associates with chromatin in prophase, in contrast to condensin I which is cytoplasmic and can thus interact with chromosomes only after nuclear envelope breakdown. RNA interference experiments in conjunction with imaging of live and fixed cells revealed that condensin II is required for chromosome condensation in early prophase, whereas condensin I appears to be dispensable at this stage. By contrast, condensin I is required for the complete dissociation of cohesin from chromosome arms, for chromosome shortening and for normal timing of progression through prometaphase and metaphase, whereas normal condensin II levels are dispensable for these processes. After depletion of both condensin complexes, the onset of chromosome condensation is delayed until the end of prophase, but is then initiated rapidly before nuclear envelope breakdown. These results reveal that condensin II and I associate with chromosomes sequentially and have distinct functions in mitotic chromosome assembly.


Current Biology | 2006

Live-Cell Imaging Reveals a Stable Cohesin-Chromatin Interaction after but Not before DNA Replication

Daniel W. Gerlich; Birgit Koch; Florine Dupeux; Jan-Michael Peters; Jan Ellenberg

Cohesin is a multisubunit protein complex that links sister chromatids from replication until segregation. The lack of obvious cohesin-targeting-specific sequences on DNA, as well as cohesins molecular arrangement as a large ring, has led to the working hypothesis that cohesin acts as a direct topological linker. To preserve the identity of sister chromatids, such a linkage would need to stably persist throughout the entire S and G2 phases of the cell cycle. Unexpectedly, cohesin binds chromatin already in telophase, and a large fraction dissociates from chromosomes during prophase in a phosphorylation-dependent manner, whereas initiation of anaphase requires proteolytic cleavage of only a small fraction of cohesin. These observations raised the question of how and when cohesin interacts with chromatin during the cell cycle. Here, we report a cell-cycle dependence in the stability of cohesin binding to chromatin. Using photobleaching and quantitative live-cell imaging, we identified several cohesin pools with different chromatin binding stabilities. Although all chromatin bound cohesin dissociated after a mean residence time of less than 25 min before replication, about one-third of cohesin was bound much more stably after S phase and persisted until metaphase, consistent with long-lived links mediating cohesion between sister chromatids.


Current Biology | 2006

Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells.

Daniel W. Gerlich; Toru Hirota; Birgit Koch; Jan-Michael Peters; Jan Ellenberg

BACKGROUND Restructuring chromatin into morphologically distinct chromosomes is essential for cell division, but the molecular mechanisms underlying this process are poorly understood. Condensin complexes have been proposed as key factors, although controversial conclusions about their contribution to chromosome structure were reached by different experimental approaches in fixed cells or cell extracts. Their function under physiological conditions still needs to be defined. RESULTS Here, we investigated the specific functions of condensin I and II in live cells by fluorescence microscopy and RNAi depletion. Photobleaching and quantitative time-lapse imaging showed that GFP-tagged condensin II bound stably to chromosomes throughout mitosis. By contrast, the canonical condensin I interacted dynamically with chromatin after completion of prophase compaction, reaching steady-state levels on chromosomes before congression. In condensin I-depleted cells, compaction was normal, but chromosomes were mechanically labile and unable to withstand spindle forces during alignment. However, normal levels of condensin II were not required for chromosome stability. CONCLUSIONS We conclude that while condensin I seems dispensable for normal chromosome compaction, its dynamic binding after nuclear envelope breakdown locks already condensed chromatin in a rigid state required for mechanically stable spindle attachment.


Journal of Cell Science | 2012

Samp1 is a component of TAN lines and is required for nuclear movement

Joana Borrego-Pinto; Thibaud Jegou; Daniel S. Osorio; Frédéric Auradé; Mátyás Gorjánácz; Birgit Koch; Iain W. Mattaj; Edgar R. Gomes

The position of the nucleus is regulated in different developmental stages and cellular events. During polarization, the nucleus moves away from the future leading edge and this movement is required for proper cell migration. Nuclear movement requires the LINC complex components nesprin-2G and SUN2, which form transmembrane actin-associated nuclear (TAN) lines at the nuclear envelope. Here we show that the nuclear envelope protein Samp1 (NET5) is involved in nuclear movement during fibroblast polarization and migration. Moreover, we demonstrate that Samp1 is a component of TAN lines that contain nesprin-2G and SUN2. Finally, Samp1 associates with SUN2 and lamin A/C, and the presence of Samp1 at the nuclear envelope requires lamin A/C. These results support a role for Samp1 in the association between the LINC complex and lamins during nuclear movement.


Nature Biotechnology | 2015

High-throughput fluorescence correlation spectroscopy enables analysis of proteome dynamics in living cells

Malte Wachsmuth; Christian Conrad; Jutta Bulkescher; Birgit Koch; Robert Mahen; Mayumi Isokane; Rainer Pepperkok; Jan Ellenberg

To understand the function of cellular protein networks, spatial and temporal context is essential. Fluorescence correlation spectroscopy (FCS) is a single-molecule method to study the abundance, mobility and interactions of fluorescence-labeled biomolecules in living cells. However, manual acquisition and analysis procedures have restricted live-cell FCS to short-term experiments of a few proteins. Here, we present high-throughput (HT)-FCS, which automates screening and time-lapse acquisition of FCS data at specific subcellular locations and subsequent data analysis. We demonstrate its utility by studying the dynamics of 53 nuclear proteins. We made 60,000 measurements in 10,000 living human cells, to obtain biophysical parameters that allowed us to classify proteins according to their chromatin binding and complex formation. We also analyzed the cell-cycle-dependent dynamics of the mitotic kinase complex Aurora B/INCENP and showed how a rise in Aurora concentration triggers two-step complex formation. We expect that throughput and robustness will make HT-FCS a broadly applicable technology for characterizing protein network dynamics in cells.


Chromosoma | 2008

The Suv39h–HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells

Birgit Koch; Stephanie Kueng; Christine Ruckenbauer; Kerstin S. Wendt; Jan-Michael Peters

Sister chromatids are physically connected by cohesin complexes. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic and meiotic spindle. In many species, cohesion between chromosome arms is partly dissolved in prophase of mitosis, whereas cohesion is protected at centromeres until the onset of anaphase. In vertebrates, the protein Sgo1, protein phosphatase 2A, and several other proteins are required for protection of centromeric cohesin in early mitosis. In fission yeast, the recruitment of heterochromatin protein Swi6/HP1 to centromeres by the histone-methyltransferase Clr4/Suv39h is required for enrichment of cohesin at centromeres already in interphase. We have tested if the Suv39h–HP1 histone methylation pathway is also required for enrichment and mitotic protection of cohesin at centromeres in mammalian cells. We show that cohesin and HP1 proteins partially colocalize at mitotic centromeres but that cohesin localization is not detectably altered in mouse embryonic fibroblasts that lack Suv39h genes and in which HP1 proteins can, therefore, not be properly enriched in pericentric heterochromatin. Our data indicate that the Suv39h–HP1 pathway is not essential for enrichment and mitotic protection of cohesin at centromeres in mammalian cells.


eLife | 2016

Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope

Shotaro Otsuka; Khanh Huy Bui; Martin Schorb; M. Julius Hossain; Antonio Politi; Birgit Koch; Mikhail Eltsov; Martin Beck; Jan Ellenberg

The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM. DOI: http://dx.doi.org/10.7554/eLife.19071.001


Nature Communications | 2014

The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation

Hideki Yokoyama; Birgit Koch; Rudolf Walczak; Fulya Ciray-Duygu; Juan Carlos González-Sánchez; Damien P. Devos; Iain W. Mattaj; Oliver J. Gruss

The GTP-bound form of the Ran GTPase (RanGTP), produced around chromosomes, drives nuclear envelope and nuclear pore complex (NPC) re-assembly after mitosis. The nucleoporin MEL-28/ELYS binds chromatin in a RanGTP-regulated manner and acts to seed NPC assembly. Here we show that, upon mitotic NPC disassembly, MEL-28 dissociates from chromatin and re-localizes to spindle microtubules and kinetochores. MEL-28 directly binds microtubules in a RanGTP-regulated way via its C-terminal chromatin-binding domain. Using Xenopus egg extracts, we demonstrate that MEL-28 is essential for RanGTP-dependent microtubule nucleation and spindle assembly, independent of its function in NPC assembly. Specifically, MEL-28 interacts with the γ-tubulin ring complex and recruits it to microtubule nucleation sites. Our data identify MEL-28 as a RanGTP target that functions throughout the cell cycle. Its cell cycle-dependent binding to chromatin or microtubules discriminates MEL-28 functions in interphase and mitosis, and ensures that spindle assembly occurs only after NPC breakdown.

Collaboration


Dive into the Birgit Koch's collaboration.

Top Co-Authors

Avatar

Jan Ellenberg

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Jan-Michael Peters

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar

Moritz Kueblbeck

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Nike Walther

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Julius Hossain

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Malte Wachsmuth

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Bianca Nijmeijer

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Daniel W. Gerlich

Austrian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge