Birgit Kraus
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Birgit Kraus.
Bioorganic & Medicinal Chemistry Letters | 2008
Lei Fang; Birgit Kraus; Jochen Lehmann; Joerg Heilmann; Yihua Zhang; Michael W. Decker
Five tacrine-ferulic acid hybrids (6a-e) were designed and synthesized as multi-potent anti-Alzheimer drug candidates. All target compounds have better acetylcholinesterase inhibitory activity and comparable butyrylcholinesterase inhibitory activity in relation to tacrine. Interestingly, 6d showed a reversible and non-competitive inhibitory action for acetylcholinesterase indicating interaction with the peripheral anionic site, whereas a reversible but competitive inhibitory action for butyrylcholinesterase. The antioxidant study revealed that four target compounds have, compared to Trolox, high ability to absorb reactive oxygen species.
Bioorganic & Medicinal Chemistry | 2008
Michael W. Decker; Birgit Kraus; Jörg Heilmann
A set of hybrid molecules were synthesized out of lipoic acid, alpha,omega-diamines of different lengths serving as spacers, and cholinesterase (ChE) inhibiting [2,1-b]quinazolinimines. Depending on the length of the alkylene spacer the amide hybrids are inhibitors of acetylcholinesterase (AChE) with inhibitory activities of 0.5-4.6microM and inhibitors of butyrylcholinesterase (BChE) with activities down to 5.7nM, therefore greatly exceeding the inhibitory activities of the parent quinazolinimines by factors of up to 1000. Due to increasing activity at BChE with increasing length of the alkylene spacer approximately 100-fold selectivity toward BChE is reached with a hepta- and an octamethylene spacer. Kinetic measurements reveal competitive and reversible inhibition of both ChEs by the hybrids. Furthermore, cell viability and antioxidant activity (using the ORAC-fluorescein assay) of several hybrids were evaluated, showing cytotoxicity at concentrations from 3.7 to 10.2microM and antioxidant properties are in the range of 0.4-0.8 Trolox equivalents (lipoic acid=0.6).
Molecular Nutrition & Food Research | 2010
C Dorn; Birgit Kraus; Magdalena Motyl; Thomas Weiss; Manfred Gehrig; Jürgen Schölmerich; Jörg Heilmann; Claus Hellerbrand
Xanthohumol (XN) is a major prenylated chalcone found in hops, which is used to add bitterness and flavor to beer. In this study, we first investigated the effects of XN on hepatocytes and hepatic stellate cells (HSC), the central mediators of liver fibrogenesis. XN inhibited the activation of primary human HSC and induced apoptosis in activated HSC in vitro in a dose dependent manner (0-20 microM). In contrast, XN doses as high as 50 microM did not impair viability of primary human hepatocytes. However, in both cell types XN inhibited activation of the transcription factor NFkappaB and expression of NFkappaB dependent proinflammatory genes. In vivo, feeding of XN reduced hepatic inflammation and expression of profibrogenic genes in a murine model of non-alcoholic steatohepatitis. These data indicate that XN has the potential as functional nutrient for the prevention or treatment of non-alcoholic steatohepatitis or other chronic liver disease.
Journal of Medicinal Chemistry | 2012
Xinyu Chen; Katharina Zenger; Amelie Lupp; Beata Kling; Jörg Heilmann; Christian Fleck; Birgit Kraus; Michael W. Decker
A codrug of the anti-Alzheimer drug tacrine and the natural product silibinin was synthesized. The codrugs biological and pharmacological properties were compared to an equimolar mixture of the components. The compound showed potent acetyl- and butyrylcholinesterase inhibition. In a cellular hepatotoxicity model, analyzing the influence on viability and mitochondria of hepatic stellate cells (HSC), the toxicity of the codrug was markedly reduced in comparison to that of tacrine. Using a neuronal cell line (HT-22), a neuroprotective effect against glutamate-induced toxicity could be observed that was absent for the 1:1 mixture of components. In subsequent in vivo experiments in rats, in contrast to the effects seen after tacrine treatment, after administration of the codrug no hepatotoxicity and no induction of the cytochrome P450 system were noticed. In a scopolamine-induced cognitive impairment model using Wistar rats, the codrug was as potent as tacrine in reversing memory dysfunction. The tacrine-silibinin codrug shows high AChE and BChE inhibition, neuroprotective effects, lacks tacrines hepatotoxicity in vitro and in vivo, and shows the same pro-cognitive effects in vivo as tacrine, being superior to the physical mixture of tacrine and silibinin in all these regards.
RSC Advances | 2013
Regina Klein; Eva Müller; Birgit Kraus; Gabi Brunner; Boris Estrine; Didier Touraud; Jörg Heilmann; Matthias Kellermeier; Werner Kunz
Using choline as a counterion in fatty acid surfactants substantially increases their water solubility as compared to classical sodium and potassium soaps, and thereby enables the application of desirable longer-chain derivatives at ambient temperature. Since choline can be decomposed both physiologically and environmentally, corresponding fatty acid soaps are considered to be highly biocompatible. Recent toxicity and biodegradability studies of choline ionic liquids, including anions such as short- and middle-chain alkanoates, have verified the expected low toxic impact. However, according to the European Cosmetic Directive 76/768/EEC, all salts of choline are forbidden in cosmetic products, mainly just due to its classification as a quaternary ammonium ion. In order to facilitate their application in the future, we have investigated the biodegradability of choline soaps (ChCm) with alkyl chain lengths of m = 12–18 according to the OCDE 301F standard. Further, the cytotoxicity of ChCm surfactants with m = 8–16 was determined, both for odd- and even-numbered fatty acids. Studies were carried out using two different human cell lines, namely cervix carcinoma cells (HeLa) and keratinocytes (SK-Mel-28). For a better comparability to common soaps and to shed light on the influence of the cation, sodium and potassium homologues were also investigated. Results reveal an unexpected non-linear relationship between the hydrophobic chain length and the IC50 value. Most importantly, the presented data show that IC50 values of ChCm surfactants coincide with those of the widely applied sodium and potassium soaps. This demonstrates that choline carboxylate surfactants are harmless and thus strongly supports their applicability in customer end products.
Colloids and Surfaces B: Biointerfaces | 2014
Doris Rengstl; Birgit Kraus; Matthew Van Vorst; Gloria D. Elliott; Werner Kunz
Choline carboxylates, ChCm, with m=2-10 and choline oleate are known as biocompatible substances, yet their influence on biological membranes is not well-known, and the effect on human skin has not previously been investigated. The short chain choline carboxylates ChCm with m=2, 4, 6 act as hydrotropes, solubilizing hydrophobic compounds in aqueous solution, while the longer chain choline carboxylates ChCm with m=8, 10 and oleate are able to form micelles. In the present study, the cytotoxicity of choline carboxylates was tested using HeLa and SK-MEL-28 cells. The influence of these substances on liposomes prepared from dipalmitoylphosphatidylcholine (DPPC) was also evaluated to provide insights on membrane interactions. It was observed that the choline carboxylates with a chain length of m>8 distinctly influence the bilayer, while the shorter ones had minimal interaction with the liposomes.
Journal of Agricultural and Food Chemistry | 2011
Horst Wolff; Magdalena Motyl; Claus Hellerbrand; Jörg Heilmann; Birgit Kraus
Xanthohumol (XN) is the major prenylated chalcone of hops and hence an ingredient of beer. Despite many advances in understanding of the pharmacology of XN, one largely unresolved issue is its low bioavailability in the human organism. Also, not much is known about its actual concentrations and pharmacokinetics in liver and intestinal cells. Therefore, the uptake, intracellular distribution, and kinetics of XN were studied in various cell types, namely, hepatocellular carcinoma cells (HuH-7), hepatic stellate cells (HSC), primary cultured hepatocytes, and colorectal adenocarcinoma cells (Caco-2). Fluorescent microscopy allowed for the first time visualization and tracing of the uptake and intracellular distribution of XN. A rapid accumulation of XN concentrations that were up to >60-fold higher than the concentration present in the ambient culture medium was observed. Fluorescence recovery after photobleaching experiments revealed that most XN molecules are bound to cellular proteins, which may alter properties of cellular factors.
PLOS ONE | 2014
Stephan Kremb; Markus Helfer; Birgit Kraus; Horst Wolff; Christian Wild; Martha Schneider; Christian R. Voolstra; Ruth Brack-Werner
In recent years, marine algae have emerged as a rich and promising source of molecules with potent activities against various human pathogens. The widely distributed brown alga Lobophora variegata that is often associated with tropical coral reefs exerts strong antibacterial and antiprotozoal effects, but so far has not been associated with specific anti-viral activities. This study investigated potential HIV-1 inhibitory activity of L. variegata collected from different geographical regions, using a cell-based full replication HIV-1 reporter assay. Aqueous L. variegata extracts showed strong inhibitory effects on several HIV-1 strains, including drug-resistant and primary HIV-1 isolates, and protected even primary cells (PBMC) from HIV-1-infection. Anti-viral potency was related to ecological factors and showed clear differences depending on light exposition or epiphyte growth. Assays addressing early events of the HIV-1 replication cycle indicated that L. variegata extracts inhibited entry of HIV-1 into cells at a pre-fusion step possibly by impeding mobility of virus particles. Further characterization of the aqueous extract demonstrated that even high doses had only moderate effects on viability of cultured and primary cells (PBMCs). Imaging-based techniques revealed extract effects on the plasma membrane and actin filaments as well as induction of apoptosis at concentrations exceeding EC50 of anti-HIV-1 activity by more than 400 fold. In summary, we show for the first time that L. variegata extracts inhibit HIV-1 entry, thereby suggesting this alga as promising source for the development of novel HIV-1 inhibitors.
Journal of Pharmacy and Pharmacology | 2013
Katharina Zenger; Xinyu Chen; Michael W. Decker; Birgit Kraus
A tacrine‐silibinin codrug showed promising results in pharmacological and toxicity testing, superior to an equimolar mixture of tacrine and silibinin. The aim of this study was to get more information about its stability, possible degradation products, metabolites, and especially its active principle in vitro and in vivo.
Fitoterapia | 2015
Marcel Flemming; Birgit Kraus; Anne Rascle; Guido Jürgenliemk; Simone Fuchs; Robert Fürst; Jörg Heilmann
The proazulene matricine (1) is present in chamomile flower heads and has been proven to exhibit strong in vivo anti-inflammatory activity. In contrast to other secondary metabolites in chamomile preparations like its degradation product chamazulene (2), no plausible targets have been found to explain this activity. Therefore we revisited 1 regarding its in vitro anti-inflammatory activity in cellular and molecular studies. Using ICAM-1 as a marker for NF-κB activation, it was shown that ICAM-1 protein expression induced by TNF-α and LPS, but not by IFN-γ, was remarkably inhibited by 1 in endothelial cells (HMEC-1). Inhibition was concentration-dependent in a micromolar range (10-75 μM) and did not involve cytotoxic effects. At 75 μM expression of the adhesion molecule ICAM-1 was down to 52.7 ± 3.3% and 20.4 ± 1.8% of control in TNF-α and LPS-stimulated HMEC-1, respectively. In contrast, 2 showed no activity. Quantitative RT-PCR experiments revealed that TNF-α-induced expression of the ICAM-1 gene was also reduced by 1 in a concentration-dependent manner, reaching 32.3 ± 6.2% of control at 100 μM matricine. Additional functional assays (NF-κB promotor activity and cytoplasm to nucleus translocation) confirmed the inhibitory effect of 1 on NF-κB signaling. Despite the fact that 1 lacks an α,β-unsaturated carbonyl and is thus not able to act via a Michael reaction with electron rich SH groups of functional biological molecules, data gave strong evidence that 1 inhibits NF-κB transcriptional activity in endothelial cells by an hitherto unknown mechanism and this may contribute to its well-known anti-inflammatory activity in vivo.