Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Schiøtt is active.

Publication


Featured researches published by Birgit Schiøtt.


Biophysical Journal | 2008

Peptide Aggregation and Pore Formation in a Lipid Bilayer: A Combined Coarse-Grained and All Atom Molecular Dynamics Study

Lea Thøgersen; Birgit Schiøtt; Thomas Vosegaard; Niels Chr. Nielsen; Emad Tajkhorshid

We present a simulation study where different resolutions, namely coarse-grained (CG) and all-atom (AA) molecular dynamics simulations, are used sequentially to combine the long timescale reachable by CG simulations with the high resolution of AA simulations, to describe the complete processes of peptide aggregation and pore formation by alamethicin peptides in a hydrated lipid bilayer. In the 1-micros CG simulations the peptides spontaneously aggregate in the lipid bilayer and exhibit occasional transitions between the membrane-spanning and the surface-bound configurations. One of the CG systems at t = 1 micros is reverted to an AA representation and subjected to AA simulation for 50 ns, during which water molecules penetrate the lipid bilayer through interactions with the peptide aggregates, and the membrane starts leaking water. During the AA simulation significant deviations from the alpha-helical structure of the peptides are observed, however, the size and arrangement of the clusters are not affected within the studied time frame. Solid-state NMR experiments designed to match closely the setup used in the molecular dynamics simulations provide strong support for our finding that alamethicin peptides adopt a diverse set of configurations in a lipid bilayer, which is in sharp contrast to the prevailing view of alamethicin oligomers formed by perfectly aligned helical alamethicin peptides in a lipid bilayer.


Journal of the American Chemical Society | 2008

Binding of serotonin to the human serotonin transporter. Molecular modeling and experimental validation

Leyla Celik; Steffen Sinning; Kasper Severinsen; Carsten Gram Hansen; Maria S. Moller; Mikael Bols; Ove Wiborg; Birgit Schiøtt

Molecular modeling and structure-activity relationship studies were performed to propose a model for binding of the neurotransmitter serotonin (5-HT) to the human serotonin transporter (hSERT). Homology models were constructed using the crystal structure of a bacterial homologue, the leucine transporter from Aquifex aeolicus, as the template and three slightly different sequence alignments. Induced fit docking of 5-HT into hSERT homology models resulted in two different binding modes. Both show a salt bridge between Asp98 and the charged primary amine of 5-HT, and both have the 5-HT C6 position of the indole ring pointing toward Ala173. The difference between the two orientations of 5-HT is an enantiofacial discrimination of the indole ring, resulting in the 5-hydroxyl group of 5-HT being vicinal to either Ser438/Thr439 or Ala169/Ile172/Ala173. To assess the binding experimentally, binding affinities for 5-HT and 17 analogues toward wild type and 13 single point mutants of hSERT were measured using an approach termed paired mutant-ligand analogue complementation (PaMLAC). The proposed ligand-protein interaction was systematically examined by disrupting it through site-directed mutagenesis and re-establishing another interaction via a ligand analogue matching the mutated residue, thereby minimizing the risk of identifying indirect effects. The interactions between Asp98 and the primary amine of 5-HT and the interaction between the C6-position of 5-HT and hSERT position 173 was confirmed using PaMLAC. The measured binding affinities of various mutants and 5-HT analogues allowed for a distinction between the two proposed binding modes of 5-HT and biochemically support the model for 5-HT binding in hSERT where the 5-hydroxyl group is in close proximity to Thr439.


Nature Communications | 2011

Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes

Yonathan Sonntag; Maria Musgaard; Claus Olesen; Birgit Schiøtt; Jesper V. Møller; Poul Nissen; Lea Thøgersen

The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.


Journal of Biological Chemistry | 2010

Binding and Orientation of Tricyclic Antidepressants within the Central Substrate Site of the Human Serotonin Transporter

Steffen Sinning; Maria Musgaard; Marie Jensen; Kasper Severinsen; Leyla Celik; Heidi Koldsø; Tine Meyer; Mikael Bols; Henrik Jensen; Birgit Schiøtt; Ove Wiborg

Tricyclic antidepressants (TCAs) have been used for decades, but their orientation within and molecular interactions with their primary target is yet unsettled. The recent finding of a TCA binding site in the extracellular vestibule of the bacterial leucine transporter 11 Å above the central site has prompted debate about whether this vestibular site in the bacterial transporter is applicable to binding of antidepressants to their relevant physiological target, the human serotonin transporter (hSERT). We present an experimentally validated structural model of imipramine and analogous TCAs in the central substrate binding site of hSERT. Two possible binding modes were observed from induced fit docking calculations. We experimentally validated a single binding mode by combining mutagenesis of hSERT with uptake inhibition studies of different TCA analogs according to the paired mutation ligand analog complementation paradigm. Using this experimental method, we identify a salt bridge between the tertiary aliphatic amine and Asp98. Furthermore, the 7-position of the imipramine ring is found vicinal to Phe335, and the pocket lined by Ala173 and Thr439 is utilized by 3-substituents. These protein-ligand contact points unambiguously orient the TCA within the central binding site and reveal differences between substrate binding and inhibitor binding, giving important clues to the inhibition mechanism. Consonant with the well established competitive inhibition of uptake by TCAs, the resulting binding site for TCAs in hSERT is fully overlapping with the serotonin binding site in hSERT and dissimilar to the low affinity noncompetitive TCA site reported in the leucine transporter (LeuT).


Journal of Physical Chemistry B | 2009

Incorporation of antimicrobial peptides into membranes: a combined liquid-state NMR and molecular dynamics study of alamethicin in DMPC/DHPC bicelles.

Jens Dittmer; Lea Thøgersen; Jarl Underhaug; Kresten Bertelsen; Thomas Vosegaard; Jan M. Pedersen; Birgit Schiøtt; Emad Tajkhorshid; Troels Skrydstrup; Niels Chr. Nielsen

Detailed insight into the interplay between antimicrobial peptides and biological membranes is fundamental to our understanding of the mechanism of bacterial ion channels and the action of these in biological host-defense systems. To explore this interplay, we have studied the incorporation, membrane-bound structure, and conformation of the antimicrobial peptide alamethicin in lipid bilayers using a combination of 1H liquid-state NMR spectroscopy and molecular dynamics (MD) simulations. On the basis of experimental NMR data, we evaluate simple in-plane and transmembrane incorporation models as well as pore formation for alamethicin in DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine/1,2-dihexanoyl-sn-glycero-3-phosphatidylcholine) bicelles. Peptide-lipid nuclear Overhauser effect (NOE) and paramagnetic relaxation enhancement (PRE) data support a transmembrane configuration of the peptide in the bilayers, but they also reveal that the system cannot be described by a single simple conformational model because there is a very high degree of dynamics and heterogeneity in the three-component system. To explore the origin of this heterogeneity and dynamics, we have compared the NOE and PRE data with MD simulations of an ensemble of alamethicin peptides in a DMPC bilayer. From all-atom MD simulations, the contacts between peptide, lipid, and water protons are quantified over a time interval up to 95 ns. The MD simulations provide a statistical base that reflects our NMR data and even can explain some initially surprising NMR results concerning specific interactions between alamethicin and the lipids.


Journal of Biological Chemistry | 2013

Ion Pathways in the Sarcoplasmic Reticulum Ca2+-ATPase

Maike Bublitz; Maria Musgaard; Hanne Poulsen; Lea Thøgersen; Claus Olesen; Birgit Schiøtt; J. Preben Morth; Jesper Møller; Poul Nissen

The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a transmembrane ion transporter belonging to the PII-type ATPase family. It performs the vital task of re-sequestering cytoplasmic Ca2+ to the sarco/endoplasmic reticulum store, thereby also terminating Ca2+-induced signaling such as in muscle contraction. This minireview focuses on the transport pathways of Ca2+ and H+ ions across the lipid bilayer through SERCA. The ion-binding sites of SERCA are accessible from either the cytoplasm or the sarco/endoplasmic reticulum lumen, and the Ca2+ entry and exit channels are both formed mainly by rearrangements of four N-terminal transmembrane α-helices. Recent improvements in the resolution of the crystal structures of rabbit SERCA1a have revealed a hydrated pathway in the C-terminal transmembrane region leading from the ion-binding sites to the cytosol. A comparison of different SERCA conformations reveals that this C-terminal pathway is exclusive to Ca2+-free E2 states, suggesting that it may play a functional role in proton release from the ion-binding sites. This is in agreement with molecular dynamics simulations and mutational studies and is in striking analogy to a similar pathway recently described for the related sodium pump. We therefore suggest a model for the ion exchange mechanism in PII-ATPases including not one, but two cytoplasmic pathways working in concert.


Journal of Chemical Information and Modeling | 2011

Molecular Docking with Ligand Attached Water Molecules

Mette Alstrup Lie; René Thomsen; Christian N. S. Pedersen; Birgit Schiøtt; Mikael H. Christensen

A novel approach to incorporate water molecules in protein-ligand docking is proposed. In this method, the water molecules display the same flexibility during the docking simulation as the ligand. The method solvates the ligand with the maximum number of water molecules, and these are then retained or displaced depending on energy contributions during the docking simulation. Instead of being a static part of the receptor, each water molecule is a flexible on/off part of the ligand and is treated with the same flexibility as the ligand itself. To favor exclusion of the water molecules, a constant entropy penalty is added for each included water molecule. The method was evaluated using 12 structurally diverse protein-ligand complexes from the PDB, where several water molecules bridge the ligand and the protein. A considerable improvement in successful docking simulations was found when including flexible water molecules solvating hydrogen bonding groups of the ligand. The method has been implemented in the docking program Molegro Virtual Docker (MVD).


Chemical Research in Toxicology | 2008

Exploring Interactions of Endocrine-Disrupting Compounds with Different Conformations of the Human Estrogen Receptor α Ligand Binding Domain: A Molecular Docking Study

Leyla Celik; Julie Davey Dalsgaard Lund; Birgit Schiøtt

Endocrine-disrupting compounds (EDCs) accumulating in nature are known to interact with nuclear receptors. Especially important is the human estrogen receptor alpha (hERalpha), and several EDCs are either known or suspected to influence the activity of the ligand-binding domain (LBD). We here present a comparative docking study of both well-known hERalpha ligands and small organic compounds, including selected polychlorinated biphenyls (PCBs), plasticizers, and pesticides, that are all potentially endocrine-disrupting,into different conformations of the hERalpha LBD. Three newly found quasi-stable structures of the hERalhpa LBD are examined along with three crystallographic conformations of the protein, either theapo structure or using a protein structure with a bound agonist or antagonist ligand. The possible interactions between the protein and the potentially EDCs are described. It is found that most suspected EDCs can bind in the steroid binding cavity, interacting with at least one of the two hydrophilic ends of the steroid binding site. DDE, DDT, and HPTE are predicted to bind most strongly to the hERalpha LBD. It is predicted that these compounds can interact with the three conformations of hERalpha LBD with comparable affinities.The metabolic hydroxylation of aromatic compounds is found to lead to an increase in the binding affinity of PCBs as well as DDT. Docking into the quasi-stable conformations of the hERalpha LBD leads to computed binding affinities similar to or better than those calculated for the three X-ray structures, revealing that the new structures may be of importance for assessing the function of the influence of EDCs on nuclear receptors.


Biomacromolecules | 2010

Conformational flexibility of chitosan: a molecular modeling study.

Søren Skovstrup; Signe Grann Hansen; Troels Skrydstrup; Birgit Schiøtt

Chitin and chitosan are naturally occurring polysaccharides composed of β-(1,4) linked N-acetylglucosamine units (GlcNAc) and, for chitosan, also glucosamine units (GlcN). In recent years, chitosan has attracted much interest because of its special physical and chemical properties related to drug delivery, wound healing, and tissue engineering. However, limited structural knowledge is available for chitosan because of its composition of the randomly mixed building blocks, GlcNAc and GlcN. In this study, we present exhaustive combined molecular dynamics and Monte Carlo simulations that unravel the conformational flexibility of the β-(1,4)-linkage in di-, tri-, and tetrasaccharide models of chitin and chitosan. The most flexible disaccharide unit was found to be GlcN-GlcNAc, populating four conformations. Furthermore, it is found that the conformational freedom of a glycosidic bond is independent of the flexibility of the neighboring linkages along the oligomer. The results are interpreted with respect to hydrogen bond formation and implications for polymer properties.


PLOS Computational Biology | 2011

Unbiased Simulations Reveal the Inward-Facing Conformation of the Human Serotonin Transporter and Na+ Ion Release

Heidi Koldsø; Pernille Rimmer Noer; Julie Grouleff; Henriette Elisabeth Autzen; Steffen Sinning; Birgit Schiøtt

Monoamine transporters are responsible for termination of synaptic signaling and are involved in depression, control of appetite, and anxiety amongst other neurological processes. Despite extensive efforts, the structures of the monoamine transporters and the transport mechanism of ions and substrates are still largely unknown. Structural knowledge of the human serotonin transporter (hSERT) is much awaited for understanding the mechanistic details of substrate translocation and binding of antidepressants and drugs of abuse. The publication of the crystal structure of the homologous leucine transporter has resulted in homology models of the monoamine transporters. Here we present extended molecular dynamics simulations of an experimentally supported homology model of hSERT with and without the natural substrate yielding a total of more than 1.5 µs of simulation of the protein dimer. The simulations reveal a transition of hSERT from an outward-facing occluded conformation to an inward-facing conformation in a one-substrate-bound state. Simulations with a second substrate in the proposed symport effector site did not lead to conformational changes associated with translocation. The central substrate binding site becomes fully exposed to the cytoplasm leaving both the Na+-ion in the Na2-site and the substrate in direct contact with the cytoplasm through water interactions. The simulations reveal how sodium is released and show indications of early events of substrate transport. The notion that ion dissociation from the Na2-site drives translocation is supported by experimental studies of a Na2-site mutant. Transmembrane helices (TMs) 1 and 6 are identified as the helices involved in the largest movements during transport.

Collaboration


Dive into the Birgit Schiøtt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge