Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgit Stierstorfer is active.

Publication


Featured researches published by Birgit Stierstorfer.


European Journal of Immunology | 2011

Induced Syk deletion leads to suppressed allergic responses but has no effect on neutrophil or monocyte migration in vivo.

Eva Wex; Thierry Bouyssou; Matthias J. Duechs; Klaus J. Erb; Florian Gantner; Michael P. Sanderson; Andreas Schnapp; Birgit Stierstorfer; Lutz Wollin

The spleen tyrosine kinase (Syk) is a key mediator of immunoreceptor signaling in immune cells. Thus, interfering with the function of Syk by genetic deletion or pharmacological inhibition might influence a variety of allergic and autoimmune processes. Since conventional Syk knockout mice are not viable, studies addressing the effect of Syk deletion in adult animals have been limited. To further explore functions of Syk in animal models of allergy and to shed light on the role of Syk in the in vivo migration of neutrophils and monocytes, we generated inducible Syk knockout mice. These mice harbor a floxed Syk gene and a tamoxifen‐inducible Cre recombinase under the control of the ubiquitously active Rosa26‐promoter. Thus, treatment of mice with tamoxifen leads to the deletion of Syk in all organs. Syk‐deleted mice were analyzed in mast cell‐dependent models and in models focusing on neutrophil and monocyte migration. We show that Syk deletion in adult mice reduces inflammatory responses in mast cell‐driven animal models of allergy and asthma but has no effect on the migration of neutrophils and monocytes. Therefore, the inducible Syk knockout mice presented here provide a valuable tool to further explore the role of Syk in disease‐related animal models.


Scientific Reports | 2017

Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis

Verena Aumiller; Benjamin Strobel; Merrit Romeike; Michael Schuler; Birgit Stierstorfer; Sebastian Kreuz

Extracellular matrix (ECM) composition and stiffness are major driving forces for the development and persistence of fibrotic diseases. Lysyl oxidase (LOX) and LOX-like (LOXL) proteins play crucial roles in ECM remodeling due to their collagen crosslinking and intracellular functions. Here, we systematically investigated LOX/L expression in primary fibroblasts and epithelial cells under fibrotic conditions, Bleomycin (BLM) induced lung fibrosis and in human IPF tissue. Basal expression of all LOX/L family members was detected in epithelial cells and at higher levels in fibroblasts. Various pro-fibrotic stimuli broadly induced LOX/L expression in fibroblasts, whereas specific induction of LOXL2 and partially LOX was observed in epithelial cells. Immunohistochemical analysis of lung tissue from 14 IPF patients and healthy donors revealed strong induction of LOX and LOXL2 in bronchial and alveolar epithelium as well as fibroblastic foci. Using siRNA experiments we observed that LOXL2 and LOXL3 were crucial for fibroblast-to-myofibroblast transition (FMT). As FMT could only be reconstituted with an enzymatically active LOXL2 variant, we conclude that LOXL2 enzymatic function is crucial for fibroblast transdifferentiation. In summary, our study provides a comprehensive analysis of the LOX/L family in fibrotic lung disease and indicates prominent roles for LOXL2/3 in fibroblast activation and LOX/LOXL2 in IPF.


NMR in Biomedicine | 2015

Three-dimensional accurate detection of lung emphysema in rats using ultra-short and zero echo time MRI.

Andrea Bianchi; Marta Tibiletti; Åsmund Kjørstad; Gerald Birk; Lothar R. Schad; Birgit Stierstorfer; Volker Rasche; Detlef Stiller

Emphysema is a life‐threatening pathology that causes irreversible destruction of alveolar walls. In vivo imaging techniques play a fundamental role in the early non‐invasive pre‐clinical and clinical detection and longitudinal follow‐up of this pathology. In the present study, we aimed to evaluate the feasibility of using high resolution radial three‐dimensional (3D) zero echo time (ZTE) and 3D ultra‐short echo time (UTE) MRI to accurately detect lung pathomorphological changes in a rodent model of emphysema.Porcine pancreas elastase (PPE) was intratracheally administered to the rats to produce the emphysematous changes. 3D ZTE MRI, low and high definition 3D UTE MRI and micro‐computed tomography images were acquired 4 weeks after the PPE challenge. Signal‐to‐noise ratios (SNRs) were measured in PPE‐treated and control rats. T2* values were computed from low definition 3D UTE MRI. Histomorphometric measurements were made after euthanizing the animals. Both ZTE and UTE MR images showed a significant decrease in the SNR measured in PPE‐treated lungs compared with controls, due to the pathomorphological changes taking place in the challenged lungs. A significant decrease in T2* values in PPE‐challenged animals compared with controls was measured using UTE MRI. Histomorphometric measurements showed a significant increase in the mean linear intercept in PPE‐treated lungs. UTE yielded significantly higher SNR compared with ZTE (14% and 30% higher in PPE‐treated and non‐PPE‐treated lungs, respectively).This study showed that optimized 3D radial UTE and ZTE MRI can provide lung images of excellent quality, with high isotropic spatial resolution (400 µm) and SNR in parenchymal tissue (>25) and negligible motion artifacts in freely breathing animals. These techniques were shown to be useful non‐invasive instruments to accurately and reliably detect the pathomorphological alterations taking place in emphysematous lungs, without incurring the risks of cumulative radiation exposure typical of micro‐computed tomography. Copyright


Toxicology | 2010

Toxicity assessment of pramipexole in juvenile rhesus monkeys

Tucker A. Patterson; Mi Li; Charlotte E. Hotchkiss; Annerose Mauz; Malcolm Eddie; Andreas Greischel; Birgit Stierstorfer; Ulrich Deschl; Merle G. Paule

Pramipexole (PPX) is a dopamine agonist approved for the treatment of the signs and symptoms of idiopathic Parkinsons disease as well as restless leg syndrome. The objective of this study was to investigate the toxicity of PPX when administered orally to juvenile rhesus monkeys once daily for 30 weeks, and to assess the reversibility of toxicity during a 12-week recovery. Rhesus monkeys (N=4 males and 4 females/group; 22-24 months of age) were orally treated daily for 30 weeks with 0.0, 0.1, 0.5 or 2.0 mg/kg PPX, and subjects were assessed daily using the NCTR Operant Test Battery (OTB). Clinical chemistry, hematology, ophthalmology and other standard postmortem toxicological evaluations, including histopathology and neuropathology as well as toxicokinetics were performed. The systemic exposure to PPX was higher than that at therapeutic doses in man and AUC(0-24 h)-data increased proportionally to dose. Blood pressure significantly decreased over time in all groups including control. Near the end of treatment, there were statistically significant decreases in heart rate for the 0.5 and 2.0 mg/kg/day groups compared to control. After 4 weeks of dosing, serum prolactin was significantly decreased in all treatment groups compared to control. This decrease remained at the end of treatment in the 0.5 and 2.0 mg/kg/day groups. In summary, administration of PPX at doses of up to 2.0 mg/kg/day for 30 weeks to juvenile rhesus monkeys produced adverse findings which were attributable to its pharmacological properties, including hypoprolactinemia.


PLOS ONE | 2017

Quantification of Pulmonary Fibrosis in a Bleomycin Mouse Model Using Automated Histological Image Analysis.

Jean-Claude Gilhodes; Yvon Julé; Sebastian Kreuz; Birgit Stierstorfer; Detlef Stiller; Lutz Wollin

Current literature on pulmonary fibrosis induced in animal models highlights the need of an accurate, reliable and reproducible histological quantitative analysis. One of the major limits of histological scoring concerns the fact that it is observer-dependent and consequently subject to variability, which may preclude comparative studies between different laboratories. To achieve a reliable and observer-independent quantification of lung fibrosis we developed an automated software histological image analysis performed from digital image of entire lung sections. This automated analysis was compared to standard evaluation methods with regard to its validation as an end-point measure of fibrosis. Lung fibrosis was induced in mice by intratracheal administration of bleomycin (BLM) at 0.25, 0.5, 0.75 and 1 mg/kg. A detailed characterization of BLM-induced fibrosis was performed 14 days after BLM administration using lung function testing, micro-computed tomography and Ashcroft scoring analysis. Quantification of fibrosis by automated analysis was assessed based on pulmonary tissue density measured from thousands of micro-tiles processed from digital images of entire lung sections. Prior to analysis, large bronchi and vessels were manually excluded from the original images. Measurement of fibrosis has been expressed by two indexes: the mean pulmonary tissue density and the high pulmonary tissue density frequency. We showed that tissue density indexes gave access to a very accurate and reliable quantification of morphological changes induced by BLM even for the lowest concentration used (0.25 mg/kg). A reconstructed 2D-image of the entire lung section at high resolution (3.6 μm/pixel) has been performed from tissue density values allowing the visualization of their distribution throughout fibrotic and non-fibrotic regions. A significant correlation (p<0.0001) was found between automated analysis and the above standard evaluation methods. This correlation establishes automated analysis as a novel end-point measure of BLM-induced lung fibrosis in mice, which will be very valuable for future preclinical drug explorations.


Inflammatory Bowel Diseases | 2016

Noninvasive Longitudinal Study of a Magnetic Resonance Imaging Biomarker for the Quantification of Colon Inflammation in a Mouse Model of Colitis

Andrea Bianchi; Teresa Bluhmki; Tanja Schönberger; Eric Kaaru; Anne Beltzer; Ernest L. Raymond; Andreas Wunder; Paresh Thakker; Birgit Stierstorfer; Detlef Stiller

Background:Colonoscopy is the gold standard to diagnose and follow up the evolution of inflammatory bowel diseases. However, this technique can still present a risk of severe complications, a general discomfort in patients, and its diagnostic value is limited to the visualization of the colon mucosal changes. Magnetic resonance imaging (MRI) is emerging as a noninvasive imaging technique of choice to overcome these limitations. The aim of this work was to evaluate the potential of colon wall thickness measured using MRI as an in vivo imaging biomarker of inflammation for inflammatory bowel disease in an animal model of this disease. Methods:On day 0, 2% or 3% Dextran sodium sulfate was added to the drinking water of mice (n = 10/group) for 5 days. Six mice were left as controls. Animals were imaged with colonoscopy and MRI on days 7, 11, and 21 to study the colitis progression. Histology was performed at the end of the protocol. Results:The colon wall thickness measured in Dextran sodium sulfate–treated animals was shown to be significantly and dose dependently increased compared to controls. Colonoscopy showed similar results and excellently correlated with MRI measurements and histology. The proposed protocol showed high robustness, with negligible interoperator and intraoperator variability. Conclusions:The findings of this investigation suggest the feasibility of using MRI for the noninvasive assessment of colon wall thickness as a robust surrogate biomarker for colon inflammation detection and follow-up. The data presented show the potential of MRI in in vivo preclinical longitudinal studies, including testing of new drugs or investigation of inflammatory bowel disease development mechanisms.


American Journal of Respiratory Cell and Molecular Biology | 2015

Modeling Pulmonary Disease Pathways Using Recombinant Adeno-Associated Virus 6.2

Benjamin Strobel; Matthias J. Duechs; Ramona Schmid; Birgit Stierstorfer; Hannes Bucher; Karsten Quast; Detlef Stiller; Tobias Hildebrandt; Detlev Mennerich; Florian Gantner; Klaus J. Erb; Sebastian Kreuz

Viral vectors have been applied successfully to generate disease-related animal models and to functionally characterize target genes in vivo. However, broader application is still limited by complex vector production, biosafety requirements, and vector-mediated immunogenic responses, possibly interfering with disease-relevant pathways. Here, we describe adeno-associated virus (AAV) variant 6.2 as an ideal vector for lung delivery in mice, overcoming most of the aforementioned limitations. In a proof-of-concept study using AAV6.2 vectors expressing IL-13 and transforming growth factor-β1 (TGF-β1), we were able to induce hallmarks of severe asthma and pulmonary fibrosis, respectively. Phenotypic characterization and deep sequencing analysis of the AAV-IL-13 asthma model revealed a characteristic disease signature. Furthermore, suitability of the model for compound testing was also demonstrated by pharmacological intervention studies using an anti-IL-13 antibody and dexamethasone. Similarly, the AAV-TGF-β1 fibrosis model showed several disease-like pathophenotypes monitored by micro-computed tomography imaging and lung function measurement. Most importantly, analyses using stuffer control vectors demonstrated that in contrast to a common adenovirus-5 vector, AAV6.2 vectors did not induce any measurable inflammation and therefore carry a lower risk of altering relevant readouts. In conclusion, we propose AAV6.2 as an ideal vector system for the functional characterization of target genes in the context of pulmonary diseases in mice.


British Journal of Pharmacology | 2018

Characterization of the properties of a selective, orally bioavailable autotaxin inhibitor in preclinical models of advanced stages of liver fibrosis

Manuel Baader; Tom Bretschneider; Andre Broermann; Joerg Rippmann; Birgit Stierstorfer; Christian Andreas Kuttruff; Michael Mark

Autotaxin (ATX) is a secreted phospholipase which hydrolyses lysophosphatidylcholine to generate lysophosphatidic acid (LPA). The extracellular signalling molecule LPA exerts its biological actions through activation of six GPCRs expressed in various cell types including fibroblasts. Multiple preclinical studies using knockout animals, LPA receptor antagonists or ATX inhibitors have provided evidence for a potential role of the ATX/LPA axis in tissue fibrosis. Despite growing evidence for a correlation between ATX levels and the degree of fibrosis in chronic liver diseases, including viral hepatitis and hepatocellular carcinoma, the role of ATX in non‐alcoholic steatohepatitis (NASH) remains unclear.


Investigative Radiology | 2015

Functional Proton MRI in Emphysematous Rats.

Andrea Bianchi; Marta Tibiletti; Åsmund Kjørstad; Gerald Birk; Lothar R. Schad; Birgit Stierstorfer; Detlef Stiller; Rasche

ObjectiveTo demonstrate the feasibility of proton magnetic resonance imaging (MRI) ventilation–related maps in rodents for the evaluation of lung function in the presence of pancreatic porcine elastase (PPE)-induced emphysema. Materials and MethodsTwelve rats were equally divided into 3 groups: group 1 (no administration of PPE); group 2 (PPE selectively only in the left lung); and group 3 (PPE administered in both lungs). Magnetic resonance imaging (MRI) and computed tomographic (CT) data were acquired at baseline, at 2 weeks and 4 weeks after administration, after which the animals were euthanized. The MRI protocol comprised a golden angle 2-dimensional ultrashort echo time MRI sequence [echo time, 0.343 millisecond (ms); repetition time, 120 ms; 12 slides with thickness, 1 mm; acquisition time, 30 minutes], from which inspiration and expiration images were reconstructed after the extraction of a self-gating signal. Inspiration images were registered to images at expiration, and expansion maps were created by calculating the specific difference in signal intensity. The lungs were segmented, and the mean specific expansion (MSE) calculated as an established surrogate for fractional ventilation. Computed tomographic data provided lung density (peak of the Hounsfield unit histogram, HU_P), whereas histology provided the mean linear intercept for each lung. ResultsTwo weeks after administration, the control group had a mean MSE in both lungs corresponding to 96% of the baseline. Group 2 had 85% of the baseline, and group 3 had 57%. Considering the PPE-treated lungs alone, a significant reduction in MSE of 27% at 2 weeks and 40% at 4 weeks was found with respect to nontreated lungs. Significant correlations between HU_P and MSE were found at all time points (baseline: r = 0.606, P = 0.0017; 2 weeks: r = 0.837, P ⩽ 0.0001; 4 weeks: r = 0.765, P < 0.0001; all time points: r = 0.739, P < 0.0001). Mean linear intercept values significantly correlated both with MRI MSE (r = −0.770, P < 0.0001) and with CT HU_P (r = −0.882, P < 0.0001). DiscussionThe calculated ventilation-related maps showed a reduction of function in the PPE-treated lungs, both compared to the nontreated lungs and to the baseline values. Moreover, a good agreement between MRI-measured MSE, CT, and histology data quantitatively supports the presence of ventilation deficit in emphysematous lungs.In this work, we have demonstrated the feasibility of ventilation-related maps from non–contrast-enhanced 1H lung MRI, which were capable of tracking changes in lung function over time in emphysematous rats.


PLOS ONE | 2018

Deep neural network based histological scoring of lung fibrosis and inflammation in the mouse model system

Fabian Heinemann; Gerald Birk; Tanja Schoenberger; Birgit Stierstorfer

Preclinical studies of novel compounds rely on quantitative readouts from animal models. Frequently employed readouts from histopathological tissue scoring are time consuming, require highly specialized staff and are subject to inherent variability. Recent advances in deep convolutional neural networks (CNN) now allow automating such scoring tasks. Here, we demonstrate this for the case of the Ashcroft fibrosis score and a newly developed inflammation score to characterize fibrotic and inflammatory lung diseases. Sections of lung tissue from mice exhibiting a wide range of fibrotic and inflammatory states were stained with Masson trichrome. Whole slide scans using a 20x objective were acquired and cut into smaller tiles of 512x512 pixels. The tiles were subsequently classified by specialized CNNs, either an “Ashcroft fibrosis CNN” or an “inflammation CNN”. For the Ashcroft fibrosis score the CNN was fine-tuned by using 14000 labelled tiles. For the inflammation score the CNN was trained with 3500 labelled tiles. After training, the Ashcroft fibrosis CNN achieved an accuracy of 79.5% and the inflammation CNN an accuracy of 80.0%. An error analysis revealed that misclassifications are almost exclusively with neighboring scores, which reflects the inherent ambiguity of parts of the data. The variability between two experts was found to be larger than the variability between the CNN classifications and the ground truth. The CNN generated Ashcroft score was in very good agreement with the score of a pathologist (r2 = 0.92). Our results demonstrate that costly and time consuming scoring tasks can be automated and standardized with deep learning. New scores such as the inflammation score can be easily developed with the approach presented here.

Collaboration


Dive into the Birgit Stierstorfer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge