Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgitta Agerberth is active.

Publication


Featured researches published by Birgitta Agerberth.


Journal of Biological Chemistry | 1997

The Expression of the Gene Coding for the Antibacterial Peptide LL-37 Is Induced in Human Keratinocytes during Inflammatory Disorders

Margareta Frohm; Birgitta Agerberth; Ghasem Ahangari; Mona Ståhle-Bäckdahl; Sture Lidén; Hans Wigzell; Gudmundur H. Gudmundsson

The epithelia constitute a major barrier to the environment and provide the first line of defense against invading microbes. Antimicrobial peptides are emerging as participants in the defense system of epithelial barriers in general. Originally we isolated the human antimicrobial peptide LL-37 from granulocytes. The gene (CAMP or cathelicidinantimicrobial peptide) coding for this peptide belongs to the cathelicidin family, whose members contain a conserved pro-part of the cathelin type. The human genome seems to have only one gene of this family, whereas some mammalian species have several cathelicidin genes. In the present work we demonstrate up-regulation of this human cathelicidin gene in inflammatory skin disorders, whereas in normal skin no induction was found. By in situ hybridization and immunohistochemistry the transcript and the peptide were located in keratinocytes throughout the epidermis of the inflammatory regions. In addition, the peptide was detected in partially pure fractions derived from psoriatic scales by immunoblotting. These fractions also exhibited antibacterial activity. We propose a protective role for LL-37, when the integrity of the skin barrier is damaged, participating in the first line of defense, and preventing local infection and systemic invasion of microbes.


Nature Medicine | 2006

The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection

Milan Chromek; Zuzana Slamová; Peter Bergman; László Kovács; Ludmila Podracka; Ingrid Ehrén; Tomas Hökfelt; Gudmundur H. Gudmundsson; Richard L. Gallo; Birgitta Agerberth; Annelie Brauner

The urinary tract functions in close proximity to the outside environment, yet must remain free of microbial colonization to avoid disease. The mechanisms for establishing an antimicrobial barrier in this area are not completely understood. Here, we describe the production and function of the cathelicidin antimicrobial peptides LL-37, its precursor hCAP-18 and its ortholog CRAMP in epithelial cells of human and mouse urinary tract, respectively. Bacterial contact with epithelial cells resulted in rapid production and secretion of the respective peptides, and in humans LL-37/hCAP-18 was released into urine. Epithelium-derived cathelicidin substantially contributed to the protection of the urinary tract against infection, as shown using CRAMP-deficient and neutrophil-depleted mice. In addition, clinical E. coli strains that were more resistant to LL-37 caused more severe urinary tract infections than did susceptible strains. Thus, cathelicidin seems to be a key factor in mucosal immunity of the urinary tract.


Nature Medicine | 2001

Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulator

Dilara Islam; Lisa Bandholtz; Jakob Nilsson; Hans Wigzell; Birger Christensson; Birgitta Agerberth; Gudmundur H. Gudmundsson

Antibacterial peptides are active defense components of innate immunity. Several studies confirm their importance at epithelial surfaces as immediate barrier effectors in preventing infection. Here we report that early in Shigella spp. infections, expression of the antibacterial peptides LL-37 and human β-defensin-1 is reduced or turned off. The downregulation is detected in biopsies from patients with bacillary dysenteries and in Shigella- infected cell cultures of epithelial and monocyte origin. This downregulation of immediate defense effectors might promote bacterial adherence and invasion into host epithelium and could be an important virulence parameter. Analyses of bacterial molecules causing the downregulation indicate Shigella plasmid DNA as one mediator.


Nature Medicine | 2013

Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes

Julien Diana; Yannick Simoni; Laetitia Furio; Lucie Beaudoin; Birgitta Agerberth; Franck J. Barrat; Agnès Lehuen

Type 1 diabetes develops over many years and is characterized ultimately by the destruction of insulin-producing pancreatic beta cells by autoreactive T cells. Nonetheless, the role of innate cells in the initiation of this disease remains poorly understood. Here, we show that in young female nonobese diabetic mice, physiological beta cell death induces the recruitment and activation of B-1a cells, neutrophils and plasmacytoid dendritic cells (pDCs) to the pancreas. Activated B-1a cells secrete IgGs specific for double-stranded DNA. IgGs activate neutrophils to release DNA-binding cathelicidin-related antimicrobial peptide (CRAMP), which binds self DNA. Then, self DNA, DNA-specific IgG and CRAMP peptide activate pDCs through the Toll-like receptor 9–myeloid differentiation factor 88 pathway, leading to interferon-α production in pancreatic islets. We further demonstrate through the use of depleting treatments that B-1a cells, neutrophils and IFN-α–producing pDCs are required for the initiation of the diabetogenic T cell response and type 1 diabetes development. These findings reveal that an innate immune cell crosstalk takes place in the pancreas of young NOD mice and leads to the initiation of T1D.


Pediatric Research | 2003

Antimicrobial polypeptides of human vernix caseosa and amniotic fluid: implications for newborn innate defense.

Hiroyuki Yoshio; Maria Tollin; Gudmundur H. Gudmundsson; Hugo Lagercrantz; Hans Jörnvall; Giovanna Marchini; Birgitta Agerberth

Antimicrobial peptides/proteins are widespread in nature and play a critical role in host defense. To investigate whether these components contribute to surface protection of newborns at birth, we have characterized antimicrobial polypeptides in vernix caseosa (vernix) and amniotic fluid (AF). Concentrated peptide/protein extracts were obtained from 11 samples of vernix and six samples of AF and analyzed for antimicrobial activity using an inhibition zone assay. Proteins/peptides in all vernix extracts exhibited strong antibacterial activity against Bacillus megaterium (strain Bm11), in addition to antifungal activity against Candida albicans, whereas AF-derived proteins/peptides showed only the former activity. Fractions obtained after separation by reverse-phase HPLC exhibited antibacterial activity, with the most pronounced activity in a fraction containing α-defensins (HNP1-3). The presence of HNP1-3 was proved by dot blot analysis and confirmed by mass spectrometry. Lysozyme and ubiquitin were identified by sequence analysis in two fractions with antibacterial activity. Fractions of vernix and AF were also positive for LL-37 with dot blot and Western blot analyses, and one fraction apparently contained an extended form of LL-37. Interestingly, psoriasin, a calcium-binding protein that is upregulated in psoriatic skin and was found recently to exhibit antimicrobial activity, was characterized in the vernix extract. The presence of all of these antimicrobial polypeptides in vernix suggests that they are important for surface defense and may have an active biologic role against microbial invasion at birth.


Journal of Immunological Methods | 1999

Neutrophil antibacterial peptides, multifunctional effector molecules in the mammalian immune system

Gudmundur H. Gudmundsson; Birgitta Agerberth

The bactericidal machinery of mammalian neutrophils is built up of many components with different chemical properties, involving proteins, peptides and oxygen-dependent radicals. All these components work in synergy, leading to destruction and elimination of ingested microbes. During the eighties, it gradually became clear, that cationic peptides are a part of the oxygen-independent bactericidal effectors in phagocytic cells. In mammals, these antimicrobial peptides are represented by two families, the defensins and the cathelicidins. These potent broad spectra peptides are included as immediate effector molecules in innate immunity. The detailed killing mechanism for these effectors is partly known, but nearly all of them have membrane affinity, and permeate bacterial membranes, resulting in lysis of the bacteria. This peptide-membrane interaction includes also eukaryotic membranes, that implicates cytotoxic effects on host cells. Studies in vitro have established that the microenvironment is critical for their activities. In connection to cystic fibrosis, the effects of microenvironment changes are apparent, causing inactivation of peptide defences and leading to repeated serious bacterial infections. Thus, the importance of the microenvironment is also supported in vivo. Additional functions of these peptides such as chemotactic, mitogenic and stimulatory in the wound healing process suggest further important roles for these peptides.


FEBS Journal | 2011

Antimicrobial peptides important in innate immunity

Andreas Cederlund; Gudmundur H. Gudmundsson; Birgitta Agerberth

Antimicrobial peptides are present in all walks of life, from plants to animals, and they are considered to be endogenous antibiotics. In general, antimicrobial peptides are determinants of the composition of the microbiota and they function to fend off microbes and prevent infections. Antimicrobial peptides eliminate micro‐organisms through disruption of their cell membranes. Their importance in human immunity, and in health as well as disease, has only recently been appreciated. The present review provides an introduction to the field of antimicrobial peptides in general and discusses two of the major classes of mammalian antimicrobial peptides: the defensins and the cathelicidins. The review focuses on their structures, their main modes of action and their regulation.


Current HIV Research | 2007

The antimicrobial peptide LL-37 inhibits HIV-1 replication.

Peter Bergman; Lilian Walter-Jallow; Kristina Broliden; Birgitta Agerberth; Johan Söderlund

The antimicrobial peptide LL-37 is the only cathelicidin that has been described in humans. LL-37 exerts chemotactic, immunomodulatory and angiogenic effects; activities that are mediated through binding to the formyl peptide receptor like (FPRL)-1 receptor. Agonistic ligation of FPRL-1 can also induce down-regulation of HIV-1 chemokine receptors and reduce susceptibility to HIV-1 infection in vitro. Therefore, we have evaluated the capacity of LL-37 to inhibit HIV-1 infection in vitro. Here we demonstrate that LL-37 inhibits HIV-1 replication in PBMC, including primary CD4(+) T cells. This inhibition was readily reproduced using various HIV-1 isolates without detectable changes in the target cell expression of HIV-1 chemokine receptors. Accordingly, the HIV-1 inhibitory effect was shown to be independent of FPRL-1 signalling. Given the epithelial expression of LL-37, it may contribute to the local protection against HIV-1 infection.


PLOS Pathogens | 2010

Uropathogenic Escherichia coli Modulates Immune Responses and Its Curli Fimbriae Interact with the Antimicrobial Peptide LL-37

Ylva Kai-Larsen; Petra Lüthje; Milan Chromek; Verena Peters; Xiaoda Wang; Åsa Holm; Lavinia Kádas; Kjell Olof Hedlund; Jan Johansson; Matthew R. Chapman; Stefan H. Jacobson; Ute Römling; Birgitta Agerberth; Annelie Brauner

Bacterial growth in multicellular communities, or biofilms, offers many potential advantages over single-cell growth, including resistance to antimicrobial factors. Here we describe the interaction between the biofilm-promoting components curli fimbriae and cellulose of uropathogenic E. coli and the endogenous antimicrobial defense in the urinary tract. We also demonstrate the impact of this interplay on the pathogenesis of urinary tract infections. Our results suggest that curli and cellulose exhibit differential and complementary functions. Both of these biofilm components were expressed by a high proportion of clinical E. coli isolates. Curli promoted adherence to epithelial cells and resistance against the human antimicrobial peptide LL-37, but also increased the induction of the proinflammatory cytokine IL-8. Cellulose production, on the other hand, reduced immune induction and hence delayed bacterial elimination from the kidneys. Interestingly, LL-37 inhibited curli formation by preventing the polymerization of the major curli subunit, CsgA. Thus, even relatively low concentrations of LL-37 inhibited curli-mediated biofilm formation in vitro. Taken together, our data demonstrate that biofilm components are involved in the pathogenesis of urinary tract infections by E. coli and can be a target of local immune defense mechanisms.


Journal of Clinical Investigation | 2008

Neutrophil primary granule proteins HBP and HNP1–3 boost bacterial phagocytosis by human and murine macrophages

Oliver Soehnlein; Ylva Kai-Larsen; Robert Frithiof; Ole E. Sørensen; Ellinor Kenne; Karin Scharffetter-Kochanek; Einar E. Eriksson; Heiko Herwald; Birgitta Agerberth; Lennart Lindbom

In acute inflammation, infiltrating polymorphonuclear leukocytes (also known as PMNs) release preformed granule proteins having multitudinous effects on the surrounding environment. Here we present what we believe to be a novel role for PMN-derived proteins in bacterial phagocytosis by both human and murine macrophages. Exposure of macrophages to PMN secretion markedly enhanced phagocytosis of IgG-opsonized Staphylococcus aureus both in vitro and in murine models in vivo. PMN secretion activated macrophages, resulting in upregulation of the Fcgamma receptors CD32 and CD64, which then mediated the enhanced phagocytosis of IgG-opsonized bacteria. The phagocytosis-stimulating activity within the PMN secretion was found to be due to proteins released from PMN primary granules; thorough investigation revealed heparin-binding protein (HBP) and human neutrophil peptides 1-3 (HNP1-3) as the mediators of the macrophage response to PMN secretion. The use of blocking antibodies and knockout mice revealed that HBP acts via beta2 integrins, but the receptor for HNP1-3 remained unclear. Mechanistically, HBP and HNP1-3 triggered macrophage release of TNF-alpha and IFN-gamma, which acted in an autocrine loop to enhance expression of CD32 and CD64 and thereby enhance phagocytosis. Thus, we attribute what may be a novel role for PMN granule proteins in regulating the immune response to bacterial infections.

Collaboration


Dive into the Birgitta Agerberth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Bergman

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge