Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birgitte H. Kallipolitis is active.

Publication


Featured researches published by Birgitte H. Kallipolitis.


Journal of Bacteriology | 2004

The RNA-Binding Protein Hfq of Listeria monocytogenes: Role in Stress Tolerance and Virulence

Janne K. Christiansen; Marianne Halberg Larsen; Hanne Ingmer; Lotte Søgaard-Andersen; Birgitte H. Kallipolitis

In gram-negative bacteria, the RNA-binding protein Hfq has emerged as an important regulatory factor in a variety of physiological processes, including stress resistance and virulence. In Escherichia coli, Hfq modulates the stability or the translation of mRNAs and interacts with numerous small regulatory RNAs. Here, we studied the role of Hfq in the stress tolerance and virulence of the gram-positive food-borne human pathogen Listeria monocytogenes. We present evidence that Hfq is involved in the ability of L. monocytogenes to tolerate osmotic and ethanol stress and contributes to long-term survival under amino acid-limiting conditions. However, Hfq is not required for resistance to acid and oxidative stress. Transcription of hfq is induced under various stress conditions, including osmotic and ethanol stress and at the entry into the stationary growth phase, thus supporting the view that Hfq is important for the growth and survival of L. monocytogenes in harsh environments. The stress-inducible transcription of hfq depends on the alternative sigma factor sigmaB, which controls the expression of numerous stress- and virulence-associated genes in L. monocytogenes. Infection studies showed that Hfq contributes to pathogenesis in mice, yet plays no role in the infection of cultured cell lines. This study provides, for the first time, information on the role of Hfq in the stress tolerance and virulence of a gram-positive pathogen.


Nucleic Acids Research | 2010

Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes

Jesper Sejrup Nielsen; Lisbeth Kristensen Lei; Tine Ebersbach; Anders Olsen; Janne Kudsk Klitgaard; Poul Valentin-Hansen; Birgitte H. Kallipolitis

Small trans-encoded RNAs (sRNAs) modulate the translation and decay of mRNAs in bacteria. In Gram-negative species, antisense regulation by trans-encoded sRNAs relies on the Sm-like protein Hfq. In contrast to this, Hfq is dispensable for sRNA-mediated riboregulation in the Gram-positive species studied thus far. Here, we provide evidence for Hfq-dependent translational repression in the Gram-positive human pathogen Listeria monocytogenes, which is known to encode at least 50 sRNAs. We show that the Hfq-binding sRNA LhrA controls the translation and degradation of its target mRNA by an antisense mechanism, and that Hfq facilitates the binding of LhrA to its target. The work presented here provides the first experimental evidence for Hfq-dependent riboregulation in a Gram-positive bacterium. Our findings indicate that modulation of translation by trans-encoded sRNAs may occur by both Hfq-dependent and -independent mechanisms, thus adding another layer of complexity to sRNA-mediated riboregulation in Gram-positive species.


Journal of Molecular Biology | 2008

Down-regulation of Outer Membrane Proteins by Noncoding RNAs : Unraveling the cAMP-CRP-and σE-Dependent CyaR-ompX Regulatory Case

Jesper Johansen; Maiken Eriksen; Birgitte H. Kallipolitis; Poul Valentin-Hansen

The sigma(E) (extracytoplasmic stress response sigma factor in Escherichia coli) signaling system of Gram-negative bacteria plays an essential role in the maintenance of the extracytoplasmic compartment. Upon induction of this system, approximately 100 genes are up-regulated. The majority of these genes encode proteins that participate in the synthesis, assembly, and homeostasis of outer membrane proteins and lipopolysaccharides. A second aspect of the sigma(E) response is a regulatory loop that prevents expression of the major porins. Misfolding or overproduction of most of these porins is sufficient to trigger the envelope stress response. Recent work indicates that small Hfq-binding RNAs play a major role in maintaining envelope homeostasis and, so far, two sigma(E)-dependent small noncoding RNAs (sRNAs), MicA and RybB, have been shown to facilitate rapid removal of multiple omp transcripts in response to elevated activity of the alternative sigma factor. Here we report the identification of the sRNA (CyaR, cyclic AMP-activated RNA) that promotes decay of the ompX mRNA. The transcription of the cyaR gene is stringently controlled by cAMP-cAMP receptor protein and, unexpectedly, cyaR expression is also up-regulated, directly or indirectly, by sigma(E). In addition, this work identified MicA as a factor that cooperates in the negative control of ompX expression. The conservation of CyaR, MicA, RybB, and their targets suggests that the omp mRNA-sRNA regulatory network is an integral part of the envelope stress response in many enterobacteria.


Journal of Biological Chemistry | 2010

Translational regulation of gene expression by an anaerobically induced small non-coding RNA in Escherichia coli

Anders Boysen; Jakob Møller-Jensen; Birgitte H. Kallipolitis; Poul Valentin-Hansen; Martin Overgaard

Small non-coding RNAs (sRNA) have emerged as important elements of gene regulatory circuits. In enterobacteria such as Escherichia coli and Salmonella many of these sRNAs interact with the Hfq protein, an RNA chaperone similar to mammalian Sm-like proteins and act in the post-transcriptional regulation of many genes. A number of these highly conserved ribo-regulators are stringently regulated at the level of transcription and are part of major regulons that deal with the immediate response to various stress conditions, indicating that every major transcription factor may control the expression of at least one sRNA regulator. Here, we extend this view by the identification and characterization of a highly conserved, anaerobically induced small sRNA in E. coli, whose expression is strictly dependent on the anaerobic transcriptional fumarate and nitrate reductase regulator (FNR). The sRNA, named FnrS, possesses signatures of base-pairing RNAs, and we show by employing global proteomic and transcriptomic profiling that the expression of multiple genes is negatively regulated by the sRNA. Intriguingly, many of these genes encode enzymes with “aerobic” functions or enzymes linked to oxidative stress. Furthermore, in previous work most of the potential target genes have been shown to be repressed by FNR through an undetermined mechanism. Collectively, our results provide insight into the mechanism by which FNR negatively regulates genes such as sodA, sodB, cydDC, and metE, thereby demonstrating that adaptation to anaerobic growth involves the action of a small regulatory RNA.


Applied and Environmental Microbiology | 2004

pbp2229-Mediated Nisin Resistance Mechanism in Listeria monocytogenes Confers Cross-Protection to Class IIa Bacteriocins and Affects Virulence Gene Expression

Anne Gravesen; Birgitte H. Kallipolitis; Kim Holmstrøm; Poul Erik Høiby; Manilduth Ramnath; Susanne Knøchel

ABSTRACT It was previously shown that enhanced nisin resistance in some mutants was associated with increased expression of three genes, pbp2229, hpk1021, and lmo2487, encoding a penicillin-binding protein, a histidine kinase, and a protein of unknown function, respectively. In the present work, we determined the direct role of the three genes in nisin resistance. Interruption of pbp2229 and hpk1021 eliminated the nisin resistance phenotype. Interruption of hpk1021 additionally abolished the increase in pbp2229 expression. The results indicate that this nisin resistance mechanism is caused directly by the increase in pbp2229 expression, which in turn is brought about by the increase in hpk1021 expression. We also found a degree of cross-protection between nisin and class IIa bacteriocins and investigated possible mechanisms. The expression of virulence genes in one nisin-resistant mutant and two class IIa bacteriocin-resistant mutants of the same wild-type strain was analyzed, and each mutant consistently showed either an increase or a decrease in the expression of virulence genes (prfA-regulated as well as prfA-independent genes). Although the changes mostly were moderate, the consistency indicates that a mutant-specific change in virulence may occur concomitantly with bacteriocin resistance development.


Molecular Microbiology | 2009

A conserved small RNA promotes silencing of the outer membrane protein YbfM

Anders Aamann Rasmussen; Jesper Johansen; Jesper Sejrup Nielsen; Martin Overgaard; Birgitte H. Kallipolitis; Poul Valentin-Hansen

In the past few years an increasing number of small non‐coding RNAs (sRNAs) in enterobacteria have been found to negatively regulate the expression of outer membrane proteins (OMPs) at the post‐transcriptional level. These RNAs act under various growth and stress conditions, suggesting that one important physiological role of regulatory RNA molecules in Gram‐negative bacteria is to modulate the cell surface and/or to prevent accumulation of OMPs in the envelope. Here, we extend the OMP–sRNA network by showing that the expression of the OMP YbfM is silenced by a conserved sRNA, designated MicM (also known as RybC/SroB). The regulation is strictly dependent on the RNA chaperone Hfq, and mutational analysis indicates that MicM sequesters the ribosome binding site of ybfM mRNA by an antisense mechanism. Furthermore, we provide evidence that Hfq strongly enhances the on‐rate of duplex formation between MicM and its target RNA in vitro, supporting the idea that a major cellular role of the RNA chaperone is to act as a catalyst in RNA–RNA duplex formation.


PLOS ONE | 2011

A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes

Jesper Sejrup Nielsen; Marianne Halberg Larsen; Eva Maria Sternkopf Lillebæk; Teresa M. Bergholz; Mie H. G. Christiansen; Kathryn J. Boor; Martin Wiedmann; Birgitte H. Kallipolitis

In recent years, more than 60 small RNAs (sRNAs) have been identified in the gram-positive human pathogen Listeria monocytogenes, but their putative roles and mechanisms of action remain largely unknown. The sRNA LhrA was recently shown to be a post-transcriptional regulator of a single gene, lmo0850, which encodes a small protein of unknown function. LhrA controls the translation and degradation of the lmo0850 mRNA by an antisense mechanism, and it depends on the RNA chaperone Hfq for efficient binding to its target. In the present study, we sought to gain more insight into the functional role of LhrA in L. monocytogenes. To this end, we determined the effects of LhrA on global-wide gene expression. We observed that nearly 300 genes in L. monocytogenes are either positively or negatively affected by LhrA. Among these genes, we identified lmo0302 and chiA as direct targets of LhrA, thus establishing LhrA as a multiple target regulator. Lmo0302 encodes a hypothetical protein with no known function, whereas chiA encodes one of two chitinases present in L. monocytogenes. We show here that LhrA acts as a post-transcriptional regulator of lmo0302 and chiA by interfering with ribosome recruitment, and we provide evidence that both LhrA and Hfq act to down-regulate the expression of lmo0302 and chiA. Furthermore, in vitro binding experiments show that Hfq stimulates the base pairing of LhrA to chiA mRNA. Finally, we demonstrate that LhrA has a negative effect on the chitinolytic activity of L. monocytogenes. In marked contrast to this, we found that Hfq has a stimulating effect on the chitinolytic activity, suggesting that Hfq plays multiple roles in the complex regulatory pathways controlling the chitinases of L. monocytogenes.


Fems Microbiology Letters | 2003

kdpE and a putative RsbQ homologue contribute to growth of Listeria monocytogenes at high osmolarity and low temperature

Lone Brøndsted; Birgitte H. Kallipolitis; Hanne Ingmer; Susanne Knøchel

The kdp locus of Listeria monocytogenes encodes products with homology to structural proteins of a high-affinity potassium uptake system and to a two-component signal transduction system commonly involved in controlling gene expression. We have investigated the role of kdpE, encoding the transcriptional response regulator, as well as of the downstream gene, orfX, in adaptation of L. monocytogenes EGD to NaCl and low temperature. When grown in chemically defined medium the addition of NaCl to 2% decreased the growth rate of a mutant with an insertional inactivated kdpE, while mutants carrying in-frame deletions of either kdpE or orfX were unaffected by high osmolarity. Transcriptional analysis of kdpE and orfX revealed that their products are encoded by the same transcript. Thus, our data indicate that the absence of both KdpE and OrfX influences growth under osmotic pressure. Interestingly, OrfX contains a conserved domain of alpha/beta-hydrolases and resembles RsbQ that in Bacillus subtilis participates in the activation cascade of the general stress sigma factor SigB. When shifted to low temperature the deletion mutant lacking orfX resumed growth slightly faster than the wild-type. This phenotype was shared by a mutant carrying an in-frame deletion of sigB supporting the notion that OrfX could be a RsbQ homologue.


Journal of Antimicrobial Chemotherapy | 2008

Reversal of methicillin resistance in Staphylococcus aureus by thioridazine

Janne Kudsk Klitgaard; Marianne N. Skov; Birgitte H. Kallipolitis; Hans Jørn Kolmos

OBJECTIVES Thioridazine has been shown to reverse oxacillin resistance in methicillin-resistant Staphylococcus aureus (MRSA) in vitro. The aim of this study was to investigate whether thioridazine alone or in combination with oxacillin affects the transcription of the methicillin resistance gene mecA and the protein level of the encoded protein PBP2a. METHODS Viability of MRSA was determined in liquid media in the presence of oxacillin or thioridazine alone or in combination. Transcription of mecA was analysed by primer extension, and the protein level of PBP2a was analysed by western blotting in the presence of thioridazine and oxacillin. RESULTS We observed an increased susceptibility of MRSA towards oxacillin in the presence of thioridazine compared with bacteria grown with oxacillin or thioridazine alone. Transcription of mecA was reduced with increasing concentrations of thioridazine in the presence of a fixed amount of oxacillin. Furthermore, the protein level of PBP2a was reduced when bacteria were treated with the combination of oxacillin and thioridazine. The two drugs also affected the mRNA level of the beta-lactamase gene, blaZ. CONCLUSIONS The present study indicates that reversal of methicillin resistance by thioridazine in MRSA may be explained by a reduced transcription of mecA and blaZ, resulting in a reduced protein level of PBP2a.


Antimicrobial Agents and Chemotherapy | 2003

CesRK, a Two-Component Signal Transduction System in Listeria monocytogenes, Responds to the Presence of Cell Wall-Acting Antibiotics and Affects β-Lactam Resistance

Birgitte H. Kallipolitis; Hanne Ingmer; Cormac G. M. Gahan; Colin Hill; Lotte Søgaard-Andersen

ABSTRACT Listeria monocytogenes is a food-borne pathogen that can cause a variety of illnesses ranging from gastroenteritis to life-threatening septicemia. The β-lactam antibiotic ampicillin remains the drug of choice for the treatment of listeriosis. We have previously identified a response regulator of a putative two-component signal transduction system that plays a role in the virulence and ethanol tolerance of L. monocytogenes. Here we present evidence that the response regulator, CesR, and a histidine protein kinase, CesK, which is encoded by the gene downstream from cesR, are involved in the ability of L. monocytogenes to tolerate ethanol and cell wall-acting antibiotics of the β-lactam family. Furthermore, CesRK controls the expression of a putative extracellular peptide encoded by the orf2420 gene, located immediately downstream from cesRK. Inactivation of orf2420 revealed that it contributes to ethanol tolerance and pathogenesis in mice. Interestingly, we found that transcription of orf2420 was strongly induced by subinhibitory concentrations of various cell wall-acting antibiotics, ethanol, and lysozyme. The induction of orf2420 expression was abolished in the absence of CesRK. Our data suggest that CesRK is involved in regulating aspects of the cell envelope architecture and that changes in cell wall integrity provide a potent stimulus for CesRK-mediated regulation. These results further our understanding of how L. monocytogenes senses and responds to antibiotics that are used therapeutically in the treatment of infectious diseases.

Collaboration


Dive into the Birgitte H. Kallipolitis's collaboration.

Top Co-Authors

Avatar

Janne Kudsk Klitgaard

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Hans Jørn Kolmos

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Pia Kiil Nielsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirstine Jacobsen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Hanne Ingmer

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Poul Valentin-Hansen

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mette Bonde

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Anja Lund

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge