Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birke Bartosch is active.

Publication


Featured researches published by Birke Bartosch.


Journal of Experimental Medicine | 2003

Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1–E2 Envelope Protein Complexes

Birke Bartosch; Jean Dubuisson; François-Loïc Cosset

The study of hepatitis C virus (HCV), a major cause of chronic liver disease, has been hampered by the lack of a cell culture system supporting its replication. Here, we have successfully generated infectious pseudo-particles that were assembled by displaying unmodified and functional HCV glycoproteins onto retroviral and lentiviral core particles. The presence of a green fluorescent protein marker gene packaged within these HCV pseudo-particles allowed reliable and fast determination of infectivity mediated by the HCV glycoproteins. Primary hepatocytes as well as hepato-carcinoma cells were found to be the major targets of infection in vitro. High infectivity of the pseudo-particles required both E1 and E2 HCV glycoproteins, and was neutralized by sera from HCV-infected patients and by some anti-E2 monoclonal antibodies. In addition, these pseudo-particles allowed investigation of the role of putative HCV receptors. Although our results tend to confirm their involvement, they provide evidence that neither LDLr nor CD81 is sufficient to mediate HCV cell entry. Altogether, these studies indicate that these pseudo-particles may mimic the early infection steps of parental HCV and will be suitable for the development of much needed new antiviral therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Rapid induction of virus-neutralizing antibodies and viral clearance in a single-source outbreak of hepatitis C

Jan M. Pestka; Mirjam B. Zeisel; Edith Bläser; Peter Schürmann; Birke Bartosch; François-Loïc Cosset; Arvind H. Patel; Helga Meisel; Jens Baumert; Sergei Viazov; Kay Rispeter; Hubert E. Blum; Michael Roggendorf; Thomas Baumert

In contrast to a detailed understanding of antiviral cellular immune responses, the impact of neutralizing antibodies for the resolution of acute hepatitis C is poorly defined. The analysis of neutralizing responses has been hampered by the fact that patient cohorts as well as hepatitis C virus (HCV) strains are usually heterogeneous, and that clinical data from acute-phase and long-term follow-up after infection are not readily available. Using an infectious retroviral HCV pseudoparticle model system, we studied a cohort of women accidentally exposed to the same HCV strain of known sequence. In this single-source outbreak of hepatitis C, viral clearance was associated with a rapid induction of neutralizing antibodies in the early phase of infection. Neutralizing antibodies decreased or disappeared after recovery from HCV infection. In contrast, chronic HCV infection was characterized by absent or low-titer neutralizing antibodies in the early phase of infection and the persistence of infection despite the induction of cross-neutralizing antibodies in the late phase of infection. These data suggest that rapid induction of neutralizing antibodies during the early phase of infection may contribute to control of HCV infection. This finding may have important implications for understanding the pathogenesis of HCV infection and for the development of novel preventive and therapeutic antiviral strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2003

In vitro assay for neutralizing antibody to hepatitis C virus: Evidence for broadly conserved neutralization epitopes

Birke Bartosch; Jens Bukh; Jean-Christophe Meunier; Christelle Granier; Ronald E. Engle; William C. Blackwelder; Suzanne U. Emerson; François-Loïc Cosset; Robert H. Purcell

Our understanding of the humoral immune response to hepatitis C virus (HCV) is limited because the virus can be studied only in humans and chimpanzees and because previously described neutralization assays have not been robust or simple to perform. Nevertheless, epidemiologic and laboratory studies suggested that neutralizing Ab to HCV might be important in preventing infection. We have recently described a neutralization assay based on the neutralization of pseudotyped murine retrovirus constructs bearing HCV envelope glycoproteins on their surface. We have applied the assay to well characterized clinical samples from HCV-infected patients and chimpanzees, confirmed the existence of neutralizing Ab to HCV, and validated most previously reported neutralizations of the virus. We did not find neutralizing anti-HCV in resolving infections but did find relatively high titers (>1:320) of such Ab in chronic infections. Neutralizing Ab was directed not only to epitope(s) in the hypervariable region of the E2 envelope protein but also to one or more epitopes elsewhere in the envelope of the virus. Neutralizing Ab was broadly reactive and could neutralize pseudotype particles bearing the envelope glycoproteins of two different subgenotypes (1a and 1b). The ability to assay neutralizing anti-HCV should permit an assessment of the prospects for successful Ab-mediated passive and active immunoprophylaxis against hepatitis C.


Journal of Virology | 2005

An Interplay between Hypervariable Region 1 of the Hepatitis C Virus E2 Glycoprotein, the Scavenger Receptor BI, and High-Density Lipoprotein Promotes both Enhancement of Infection and Protection against Neutralizing Antibodies

Birke Bartosch; Géraldine Verney; Marlène Dreux; Peggy Donot; Yoann Morice; François Penin; Jean-Michel Pawlotsky; Dimitri Lavillette; François-Loïc Cosset

ABSTRACT Hepatitis C virus (HCV) circulates in the bloodstream in different forms, including complexes with immunoglobulins and/or lipoproteins. To address the significance of such associations, we produced or treated HCV pseudoparticles (HCVpp), a valid model of HCV cell entry and its inhibition, with naïve or patient-derived sera. We demonstrate that infection of hepatocarcinoma cells by HCVpp is increased more than 10-fold by human serum factors, of which high-density lipoprotein (HDL) is a major component. Infection enhancement requires scavenger receptor BI, a molecule known to mediate HDL uptake into cells as well as HCVpp entry, and involves conserved amino acid positions in hypervariable region 1 (HVR1) of the E2 glycoprotein. Additionally, we show that the interaction with human serum or HDL, but not with low-density lipoprotein, leads to the protection of HCVpp from neutralizing antibodies, including monoclonal antibodies and antibodies present in patient sera. Finally, the deletion or mutation of HVR1 in HCVpp abolishes infection enhancement and leads to increased sensitivity to neutralizing antibodies/sera compared to that of parental HCVpp. Altogether, these results assign to HVR1 new roles which are complementary in helping HCV to survive within its host. Besides immune escape by mutation, HRV1 can mediate the enhancement of cell entry and the protection of virions from neutralizing antibodies. By preserving a balance between these functions, HVR1 may be essential for the viral persistence of HCV.


Hepatology | 2005

Characterization of host‐range and cell entry properties of the major genotypes and subtypes of hepatitis C virus

Dimitri Lavillette; Alexander W. Tarr; Cécile Voisset; Peggy Donot; Birke Bartosch; Christine Bain; Arvind H. Patel; Jean Dubuisson; Jonathan K. Ball; François-Loı̈c Cosset

Because of the lack of a robust cell culture system, relatively little is known about the molecular details of the cell entry mechanism for hepatitis C virus (HCV). Recently, we described infectious HCV pseudo‐particles (HCVpp) that were generated by incorporating unmodified HCV E1E2 glycoproteins into the membrane of retroviral core particles. These initial studies, performed with E1E2 glycoproteins of genotype 1, noted that HCVpp closely mimic the cell entry and neutralization properties of parental HCV. Because sequence variations in E1 and E2 may account for differences in tropism, replication properties, neutralization, and response to treatment in patients infected with different genotypes, we investigated the functional properties of HCV envelope glycoproteins from different genotypes/subtypes. Our studies indicate that hepatocytes were preferential targets of infection in vitro, although HCV replication in extrahepatic sites has been reported in vivo. Receptor competition assays using antibodies against the CD81 ectodomain as well as ectopic expression of CD81 in CD81‐deficient HepG2 cells indicated that CD81 is used by all the different genotypes/subtypes analyzed to enter the cells. However, by silencing RNA (siRNA) interference assays, our results show that the level of Scavenger Receptor Class‐B Type‐I (SR‐BI) needed for efficient infection varies between genotypes and subtypes. Finally, sera from chronic HCV carriers were found to exhibit broadly reactive activities that inhibited HCVpp cell entry, but failed to neutralize all the different genotypes. In conclusion, we characterize common steps in the cell entry pathways of the major HCV genotypes that should provide clues for the development of cell entry inhibitors and vaccines. (HEPATOLOGY 2005;41:265–274.)


Journal of Virology | 2005

Monoclonal Antibody AP33 Defines a Broadly Neutralizing Epitope on the Hepatitis C Virus E2 Envelope Glycoprotein

Ania M. Owsianka; Alexander W. Tarr; Vicky S. Juttla; Dimitri Lavillette; Birke Bartosch; François-Loı̈c Cosset; Jonathan K. Ball; Arvind H. Patel

ABSTRACT Hepatitis C virus (HCV) remains a significant threat to the general health of the worlds population, and there is a pressing need for the development of new treatments and preventative vaccines. Here, we describe the generation of retrovirus-based pseudoparticles (HCVpp) incorporating a panel of full-length E1E2 clones representative of the major genotypes 1 through 6, and their application to assess the reactivity and neutralizing capability of antisera and monoclonal antibodies raised against portions of the HCV E2 envelope protein. Rabbit antisera raised against either the first hypervariable region or ectodomain of E2 showed limited and strain specific neutralization. By contrast, the monoclonal antibody (MAb) AP33 demonstrated potent neutralization of infectivity against HCVpp carrying E1E2 representative of all genotypes tested. The concentration of AP33 required to achieve 50% inhibition of infection by HCVpp of diverse genotypes ranged from 0.6 to 32 μg/ml. The epitope recognized by MAb AP33 is linear and highly conserved across different genotypes of HCV. Thus, identification of a broadly neutralizing antibody that recognizes a linear epitope is likely to be of significant benefit to future vaccine and therapeutic antibody development.


Journal of Virology | 2005

Human Serum Facilitates Hepatitis C Virus Infection, and Neutralizing Responses Inversely Correlate with Viral Replication Kinetics at the Acute Phase of Hepatitis C Virus Infection

Dimitri Lavillette; Yoann Morice; Georgios Germanidis; Peggy Donot; Alexandre Soulier; Emanuil Pagkalos; Georgios Sakellariou; Liliane Intrator; Birke Bartosch; Jean-Michel Pawlotsky; François-Loı̈c Cosset

ABSTRACT The factors leading to spontaneous clearance of hepatitis C virus (HCV) or to viral persistence are elusive. Understanding virus-host interactions that enable acute HCV clearance is key to the development of more effective therapeutic and prophylactic strategies. Here, using a sensitive neutralization assay based on infectious HCV pseudoparticles (HCVpp), we have studied the kinetics of humoral responses in a cohort of acute-phase patients infected during a single nosocomial outbreak in a hemodialysis center. The 17 patients were monitored for the spontaneous outcome of HCV infection for 6 months before a treatment decision was made. Blood samples were taken frequently (15 ± 4 per patient). Phylogenetic analysis of the predominant virus(es) revealed infection by only one of two genotype 1b strains. While all patients seroconverted, their sera induced two opposing effects in HCVpp infection assays: inhibition and facilitation. Furthermore, the ability of sera to facilitate or inhibit infection correlated with the presence of either infecting HCV strain and divided the patients into two groups. In group 1, the progressive emergence of a relatively strong neutralizing response correlated with a fluctuating decrease in high initial viremia, leading to control of viral replication. Patients in group 2 failed to reduce viremia within the acute phase, and no neutralizing responses were detected despite seroconversion. Strikingly, sera of group 2, as well as naïve sera, facilitated infection by HCVpp displaying HCV glycoproteins from different genotypes and strains, including those retrieved from patients. These results provide new insights into the mechanisms of viral persistence and immune control of viremia.


Journal of Virology | 2005

Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Glycoproteins

Anne Goffard; Nathalie Callens; Birke Bartosch; Czeslaw Wychowski; François-Loı̈c Cosset; Claire Montpellier; Jean Dubuisson

ABSTRACT Hepatitis C virus (HCV) encodes two viral envelope glycoproteins. E1 contains 4 or 5 N-linked glycosylation sites and E2 contains up to 11, with most of the sites being well conserved, suggesting that they play an essential role in some functions of these proteins. For this study, we used retroviral pseudotyped particles harboring mutated HCV envelope glycoproteins to study these glycans. The mutants were named with an N followed by a number related to the relative position of the potential glycosylation site in each glycoprotein (E1N1 to E1N4 for E1 mutants and E2N1 to E2N11 for E2 mutants). The characterization of these mutants allowed us to define three phenotypes. For the first group (E1N3, E2N3, E2N5, E2N6, E2N7, and E2N9), the infectivities of the mutants were close to that of the wild type. The second group (E1N1, E1N2, E1N4, E2N1, and E2N11) contained mutants that were still infectious but whose infectivities were reduced to <50% that of the wild type. The third group (E2N2, E2N4, E2N8, and E2N10) contained mutants that had almost totally lost infectivity. The absence of infectivity of the E2N8 and E2N10 mutants was due to the lack of incorporation of the E1E2 heterodimer into HCVpp, which was due to misfolding of the heterodimer, as shown by immunoprecipitation with conformation-sensitive antibodies and by a CD81 pull-down assay. The absence of infectivity of the E2N2 and E2N4 mutants indicated that these two glycans are involved in controlling HCV entry. Altogether, the data indicate that some glycans of HCV envelope glycoproteins play a major role in protein folding and others play a role in HCV entry.


Journal of Virology | 2004

Characterization of Functional Hepatitis C Virus Envelope Glycoproteins

Anne Op De Beeck; Cécile Voisset; Birke Bartosch; Yann Ciczora; Laurence Cocquerel; Zhen-Yong Keck; Steven K. H. Foung; François-Loïc Cosset; Jean Dubuisson

ABSTRACT Hepatitis C virus (HCV) encodes two envelope glycoproteins, E1 and E2, that assemble as a noncovalent heterodimer which is mainly retained in the endoplasmic reticulum. Because assembly into particles and secretion from the cell lead to structural changes in viral envelope proteins, characterization of the proteins associated with the virion is necessary in order to better understand how they mature to be functional in virus entry. There is currently no efficient and reliable cell culture system to amplify HCV, and the envelope glycoproteins associated with the virion have therefore not been characterized yet. Recently, infectious pseudotype particles that are assembled by displaying unmodified HCV envelope glycoproteins on retroviral core particles have been successfully generated. Because HCV pseudotype particles contain fully functional envelope glycoproteins, these envelope proteins, or at least a fraction of them, should be in a mature conformation similar to that on the native HCV particles. In this study, we used conformation-dependent monoclonal antibodies to characterize the envelope glycoproteins associated with HCV pseudotype particles. We showed that the functional unit is a noncovalent E1E2 heterodimer containing complex or hybrid type glycans. We did not observe any evidence of maturation by a cellular endoprotease during the transport of these envelope glycoproteins through the secretory pathway. These envelope glycoproteins were recognized by a panel of conformation-dependent monoclonal antibodies as well as by CD81, a molecule involved in HCV entry. The functional envelope glycoproteins associated with HCV pseudotype particles were also shown to be sensitive to low-pH treatment. Such conformational changes are likely necessary to initiate fusion.


Journal of Virology | 2009

The Tight Junction-Associated Protein Occludin Is Required for a Postbinding Step in Hepatitis C Virus Entry and Infection

Ignacio Benedicto; Francisca Molina-Jiménez; Birke Bartosch; François-Loïc Cosset; Dimitri Lavillette; Jesús Prieto; Ricardo Moreno-Otero; Agustín Valenzuela-Fernández; Rafael Aldabe; Manuel López-Cabrera; Pedro L. Majano

ABSTRACT The precise mechanisms regulating hepatitis C virus (HCV) entry into hepatic cells remain unknown. However, several cell surface proteins have been identified as entry factors for this virus. Of these molecules, claudin-1, a tight junction (TJ) component, is considered a coreceptor required for HCV entry. Recently, we have demonstrated that HCV envelope glycoproteins (HCVgp) promote structural and functional TJ alterations. Additionally, we have shown that the intracellular interaction between viral E2 glycoprotein and occludin, another TJ-associated protein, could be the cause of the mislocalization of TJ proteins. Herein we demonstrated, by using cell culture-derived HCV particles (HCVcc), that interference of occludin expression markedly reduced HCV infection. Furthermore, our results with HCV pseudotyped particles indicated that occludin, but not other TJ-associated proteins, such as junctional adhesion molecule A or zonula occludens protein 1, was required for HCV entry. Using HCVcc, we demonstrated that occludin did not play an essential role in the initial attachment of HCV to target cells. Surface protein labeling experiments showed that both expression levels and cell surface localization of HCV (co)receptors CD81, scavenger receptor class B type I, and claudin-1 were not affected upon occludin knockdown. In addition, immunofluorescence confocal analysis showed that occludin interference did not affect subcellular distribution of the HCV (co)receptors analyzed. However, HCVgp fusion-associated events were altered after occludin silencing. In summary, we propose that occludin plays an essential role in HCV infection and probably affects late entry events. This observation may provide new insights into HCV infection and related pathogenesis.

Collaboration


Dive into the Birke Bartosch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. V. Ivanov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. N. Kochetkov

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Olga A. Smirnova

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Olga N. Ivanova

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

François-Loı̈c Cosset

École normale supérieure de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge