Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Birte Matthiessen is active.

Publication


Featured researches published by Birte Matthiessen.


Ecology Letters | 2009

Biodiversity in a complex world: consolidation and progress in functional biodiversity research.

Helmut Hillebrand; Birte Matthiessen

The global decline of biodiversity caused by human domination of ecosystems worldwide is supposed to alter important process rates and state variables in these ecosystems. However, there is considerable debate on the prevalence and importance of biodiversity effects on ecosystem function (BDEF). Here, we argue that much of the debate stems from two major shortcomings. First, most studies do not directly link the traits leading to increased or decreased function to the traits needed for species coexistence and dominance. We argue that implementing a trait-based approach and broadening the perception of diversity to include trait dissimilarity or trait divergence will result in more realistic predictions on the consequences of altered biodiversity. Second, the empirical and theoretical studies do not reflect the complexity of natural ecosystems, which makes it difficult to transfer the results to natural situations of species loss. We review how different aspects of complexity (trophic structure, multifunctionality, spatial or temporal heterogeneity, and spatial population dynamics) alter our perception of BDEF. We propose future research avenues concisely testing whether acknowledging this complexity will strengthen the observed biodiversity effects. Finally, we propose that a major future task is to disentangle biodiversity effects on ecosystem function from direct changes in function due to human alterations of abiotic constraints.


Ecology Letters | 2014

Effects of sea surface warming on marine plankton

Aleksandra M. Lewandowska; Daniel G. Boyce; Matthias Hofmann; Birte Matthiessen; Ulrich Sommer; Boris Worm

Ocean warming has been implicated in the observed decline of oceanic phytoplankton biomass. Some studies suggest a physical pathway of warming via stratification and nutrient flux, and others a biological effect on plankton metabolic rates; yet the relative strength and possible interaction of these mechanisms remains unknown. Here, we implement projections from a global circulation model in a mesocosm experiment to examine both mechanisms in a multi-trophic plankton community. Warming treatments had positive direct effects on phytoplankton biomass, but these were overcompensated by the negative effects of decreased nutrient flux. Zooplankton switched from phytoplankton to grazing on ciliates. These results contrast with previous experiments under nutrient-replete conditions, where warming indirectly reduced phytoplankton biomass via increased zooplankton grazing. We conclude that the effect of ocean warming on marine plankton depends on the nutrient regime, and provide a mechanistic basis for understanding global change in marine ecosystems.


Ecology | 2007

EFFECTS OF GRAZER RICHNESS AND COMPOSITION ON ALGAL BIOMASS IN A CLOSED AND OPEN MARINE SYSTEM

Birte Matthiessen; Lars Gamfeldt; Per R. Jonsson; Helmut Hillebrand

Most natural local systems exchange organisms with a regional pool of species through migration and dispersal. Such metacommunity processes of interconnected multispecies assemblages are likely to affect local dynamics of both species and processes. We present results from an artificial marine outdoor rock pool system in which we investigated the factors of (1) local grazer richness and composition, and (2) connectivity of local patches to a regional species pool, and their effects on algal biomass. Local species richness of six grazers was manipulated in both open and closed pools, which were embedded in a regional species pool containing all six grazers. Grazer richness showed significant net biodiversity effects on grazing in the closed, but not in the open, system. Grazer composition, on the other hand, showed significant effects on grazing in both open and closed systems, depending on which species were initially present. The two most efficient grazers were able to compensate for less efficient grazers in species mixtures, hence ensuring the function of grazing. The efficiency of top-down control of algal biomass in open systems thus depends on which particular species are lost. Further, differences in grazing between the open and closed system changed over time due to temporal dynamics in grazer composition. The results emphasize the importance of including system connectivity in experimental designs to allow an extrapolation of biodiversity ecosystem-functioning relationships to natural systems.


Ecology | 2010

Dispersal decreases diversity in heterogeneous metacommunities by enhancing regional competition

Birte Matthiessen; Erik Mielke; Ulrich Sommer

Experiments and models reveal that moderate dispersal rates between local communities can increase diversity by alleviating local competitive exclusion; in contrast, high dispersal rates can decrease diversity by amplifying regional competition. However, hitherto experimental tests on how dispersal affects diversity in the presence and absence of environmental heterogeneity are largely missing, although it is known that environmental heterogeneity influences diversity. For the first time we experimentally show that the interaction between dispersal rate and the presence of an environmental gradient with on-average lower resource availability than the homogeneous control treatment affects diversity. In metacommunities of nine co-occurring species of marine benthic microalgae we factorially manipulated dispersal rate and the presence and absence of a light intensity gradient across local patches to test effects on local, regional, and beta diversity and to compare results to predictions from monoculture experiments. Although species in this experiment did not show resource partitioning along the light gradient as assumed by source-sink models, dispersal limitation maintained diversity in metacommunities with light gradients but not without. Local diversity and evenness were high under low light intensities when dispersal was limited and decreased with both increasing light intensities and dispersal rates. These diversity changes can be explained by the reduction of growth of the regional superior competitor at low light intensities alleviating its competitive strength. Increasing dispersal rate in turn compensated for the superior competitors slow growth in those local patches with rather unfavorable light conditions and thus led to decreasing diversity and evenness. In contrast, diversity in the metacommunities without a light gradient was constantly low. Here, the superior competitor contributed 90% to total community biomass in all patches. High dominance, however, likely resulted from on-average higher resource availability (i.e., higher light intensities) compared to metacommunities with light gradient and not from patch homogeneity in itself.


Hydrobiologia | 2010

Diversity and community biomass depend on dispersal and disturbance in microalgal communities

Birte Matthiessen; Robert Ptacnik; Helmut Hillebrand

The evidence for species diversity effects on ecosystem functions is mainly based on studies not explicitly addressing local or regional processes regulating coexistence or the importance of community structure in terms of species evenness. In experimental communities of marine benthic microalgae, we altered the successional stages and thus the strength of local species interactions by manipulating rates of dispersal and disturbance. The treatments altered realized species richness, evenness and community biomass. For species richness, dispersal mattered only at high disturbance rates; when opening new space, dispersal led to maximized richness at intermediate dispersal rates. Evenness, in contrast, decreased with dispersal at low or no disturbance, i.e. at late successional stages. Community biomass showed a non-linear hump-shaped response to increasing dispersal at all disturbance levels. We found a positive correlation between richness and biomass at early succession, and a strong negative correlation between evenness and biomass at late succession. In early succession both community biomass and richness depend directly on dispersal from the regional pool, whereas the late successional pattern shows that if interactions allow the most productive species to become dominant, diverting resources from this species (i.e. higher evenness) reduces production. Our study emphasizes the difference in biodiversity–function relationships over time, as different mechanisms contribute to the regulation of richness and evenness in early and late successional stages.


Global Change Biology | 2014

Community composition has greater impact on the functioning of marine phytoplankton communities than ocean acidification

Sarah Lena Eggers; Aleksandra M. Lewandowska; Joana Barcelos e Ramos; Sonia Blanco-Ameijeiras; Francesca Gallo; Birte Matthiessen

Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω(2) ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.


PLOS ONE | 2011

Extinction Debt in Source-Sink Metacommunities

Nicolas Mouquet; Birte Matthiessen; Thomas E. Miller; Andrew Gonzalez

In an increasingly modified world, understanding and predicting the consequences of landscape alteration on biodiversity is a challenge for ecologists. To this end, metacommunity theory has developed to better understand the complexity of local and regional interactions that occur across larger landscapes. While metacommunity ecology has now provided several alternative models of species coexistence at different spatial scales, predictions regarding the consequences of landscape alteration have been done exclusively for the competition-colonization trade off model (CC). In this paper we investigate the effects of landscape perturbation on source-sink metacommunities. We show that habitat destruction perturbs the equilibria among species competitive effects within the metacommunity, driving both direct extinctions and an indirect extinction debt. As in CC models, we found a time lag for extinction following habitat destruction that varied in length depending upon the relative importance of direct and indirect effects. However, in contrast to CC models, we found that the less competitive species are more affected by habitat destruction. The best competitors can sometimes even be positively affected by habitat destruction, which corresponds well with the results of field studies. Our results are complementary to those results found in CC models of metacommunity dynamics. From a conservation perspective, our results illustrate that landscape alteration jeopardizes species coexistence in patchy landscapes through complex indirect effects and delayed extinctions patterns.


Oecologia | 2016

Temperature effects on seaweed-sustaining top-down control vary with season

Franziska J. Werner; A. Graiff; Birte Matthiessen

Rising seawater temperature and CO2 concentrations (ocean acidification) represent two of the most influential factors impacting marine ecosystems in the face of global climate change. In ecological climate change research, full-factorial experiments performed across seasons in multispecies, cross-trophic-level settings are essential as they permit a more realistic estimation of direct and indirect effects as well as the relative importance of the effects of both major environmental stressors on ecosystems. In benthic mesocosm experiments, we tested the responses of coastal Baltic Sea Fucus vesiculosus communities to elevated seawater temperature and CO2 concentrations across four seasons of one year. While increasing [CO2] levels had only minor effects, warming had strong and persistent effects on grazers, and the resulting effects on the Fucus community were found to be season dependent. In late summer, a temperature-driven collapse of grazers caused a cascading effect from the consumers to the foundation species, resulting in overgrowth of Fucus thalli by epiphytes. In fall/winter (outside the growing season of epiphytes), intensified grazing under warming resulted in a significant reduction in Fucus biomass. Thus, we were able to confirm the prediction that future increases in water temperatures will influence marine food-web processes by altering top-down control, but we were also able to show that specific consequences for food-web structure depend on the season. Since F. vesiculosus is the dominant habitat-forming brown algal system in the Baltic Sea, its potential decline under global warming implies a loss of key functions and services such as provision of nutrient storage, substrate, food, shelter, and nursery grounds for a diverse community of marine invertebrates and fish in Baltic Sea coastal waters.


Helgoland Marine Research | 2003

Evidence for two sympatric species of snipefishes Macroramphosus spp. (Syngnathiformes, Centriscidae) on Great Meteor Seamount

Birte Matthiessen; H. O. Fock; Hein von Westernhagen

About 202 specimens of snipefishes (Macroramphosus spp.) from Great Meteor Seamount (GMR, subtropical NE Atlantic, 30°N, 28.5°W) were analysed with respect to diet composition and morphology. Fifty specimens belonged to the deep-bodied benthos-feeding type (b-type) whose diet consisted of foraminifers, pteropods, decapods and polychaetes, whereas the slender planktivorous individuals (p-type, n=140) mainly fed on ostracods, copepods, pteropods and foraminifers. Twelve specimens showed no specialisation with respect to feeding (p/b-type). Both feeding types can be significantly distinguished from each other by means of bi- and multivariate morphological analysis considering the variables body depth, length of second dorsal spine, diameter of orbit and standard length. We discuss the hypothesis that M. gracilis represents a transient juvenile stage of M. scolopax. Since our specimens of the M. gracilis type were larger than specimens of the M. scolopax-type, such an ontogenetic shift is unlikely to occur. Our results support the hypothesis of Clarke for Australian snipefishes that for Macroramphosus spp. locally two distinct sympatric species must be anticipated, corresponding to M. scolopax and M. gracilis and the b- and p-types, respectively.


Marine Biology | 2017

Warming has stronger direct than indirect effects on benthic microalgae in a seaweed system in spring

Franziska J. Werner; Birte Matthiessen

Using outdoor mesocosms we investigated the relative importance of the direct and indirect (here: altered grazing) effects of seawater warming on benthic microalgae in a Baltic Sea Fucus vesiculosus (Phaeophyceae) system during the spring season. Seawater warming had a positive main effect on microalgal total biomass accrual and growth rate and on total mesograzer abundance and biomass. Moreover, under the existing resource-replete conditions in spring the direct positive effect of warming on microalgae was stronger than its indirect negative effect through enhanced grazing. The outcome of this study contrasts previous observations from the summer and winter season, where indirect effects of warming mediated by altered grazing were identified as an important driver of primary biomass in the Fucus system. In this context, the results from the spring season add mechanistic information to the overall understanding of the seasonal variability of climate change effects. They suggest that the relative importance of the underlying direct and indirect effective pathways of warming and the overall effect on the balance between production and consumption are influenced by the trophic state of the system, which in temperate regions is related to season.

Collaboration


Dive into the Birte Matthiessen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Gamfeldt

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. O. Fock

Alfred Wegener Institute for Polar and Marine Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge