Biswapriya B. Misra
University of Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biswapriya B. Misra.
BMC Genomics | 2013
Ahmad Yamin Abdul Rahman; Abhilash Othalathara Usharraj; Biswapriya B. Misra; Gincy Paily Thottathil; Kandakumar Jayasekaran; Yun Feng; Shaobin Hou; Su Yean Ong; Fui Ling Ng; Ling Sze Lee; Hock Siew Tan; Muhd Khairul Luqman Muhd Sakaff; Beng Soon Teh; Bee Feong Khoo; Siti Suriawati Badai; Nurohaida Ab Aziz; Anton Yuryev; Bjarne Knudsen; Alexandre Dionne-Laporte; Nokuthula Peace Mchunu; Qingyi Yu; Brennick J. Langston; T. Freitas; Aaron G Young; Rui Chen; Lei Wang; Nazalan Najimudin; Jennifer A. Saito; Maqsudul Alam
BackgroundHevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876.ResultsHere, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified.ConclusionsThe knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.
Electrophoresis | 2016
Biswapriya B. Misra; Justin J. J. van der Hooft
Data processing and interpretation represent the most challenging and time‐consuming steps in high‐throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely‐available, and open‐source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR‐based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table.
Trends in Plant Science | 2014
Biswapriya B. Misra; Sarah M. Assmann; Sixue Chen
In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.
Frontiers in Plant Science | 2015
Biswapriya B. Misra; Biswa R. Acharya; David Granot; Sarah M. Assmann; Sixue Chen
Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other “omics” approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security.
Metabolomics | 2015
Biswapriya B. Misra; Sixue Chen
Anthropogenic climate change due to increased CO2 emission poses a major threat to global crop productivity, food quality, and security. Numerous studies, mostly classical, have predicted the effects of increased CO2 levels on environmental temperature and water balance, and on the life cycle, biomass, photosynthesis, leaf carbon/nitrogen ratio, and stomatal distribution in various plant species. With the advent of high-throughput tools for studying plant-CO2 responsiveness, it is now possible to obtain a metabolome-level view of the effect of climate change on plants. In this review, we examine the plant CO2-responsive primary and secondary metabolism, isoprene emission, in the presence of other stressors, and the advancement in state-of the art research methods that will facilitate future metabolomic studies.
PLOS ONE | 2015
Biswapriya B. Misra; Evaldo de Armas; Zhaohui Tong; Sixue Chen
Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.
Trees-structure and Function | 2013
Biswapriya B. Misra; Satyahari Dey
The East Indian sandalwood tree, Santalum album L. is known for its fragrant heartwood and essential oil. The major bioactive principles of sandalwood oil, i.e., sesquiterpenoids (C15 isoprenoids), are known as ‘santalols’ and are globally used in medicinal, cosmetic, dietary, and aromatherapeutic applications. However, there are no available reports on the biosynthesis and metabolism of isoprenoids in this forest tree. Hence, we provide detailed insights into sesquiterpenoid metabolism across several in vitro and in vivo developmental stages. Since no molecular information was available, several genes encoding enzymes participating in early and critical steps of isoprenoid biosynthetic pathways were isolated using degenerate primers, and their expression patterns across the developmental stages were studied by semi-quantitative reverse transcription PCR. Results indicate that the isoprenoid biosynthetic pathway is differentially regulated with development and in tissue-specific manner. Accumulation of plastidial isoprenoid pigments increased with development, while the amounts of farnesylated intermediates decreased with maturation, thereby possibly indicating conversion into sesquiterpenoids. A differential expression pattern was observed for hydroxy-3-methylglutaryl coenzyme A reductase and 1-deoxyxyulose-5-phosphate synthase at the levels of transcripts and proteins, indicating post-transcriptional regulation. Transcript levels of farnesyl pyrophsophate, sesquiterpene and monoterpene synthases were quantitatively higher in callus, and lower in matured tree leaves. Sesquiterpene synthase activity across different developmental stages indicated a tissue-specific conversion and accumulation. Henceforth, the results would facilitate characterization of routes of sandalwood oil biosynthesis and for future improvement of sesquiterpenoid content in this tree.
Phytomedicine | 2013
Biswapriya B. Misra; Satyahari Dey
Sandalwood finds numerous mentions across diverse traditional medicinal systems in use worldwide. The objective of this study was to evaluate the in vivo anti-hyperglycemic and antioxidant potential of sandalwood oil and its major constituent α-santalol. The in vivo anti-hyperglycemic experiment was conducted in alloxan-induced diabetic male Swiss albino mice models. The in vivo antioxidant experiment was performed in d-galactose mediated oxidative stress induced male Swiss albino mice models. Intraperitoneal administration of α-santalol (100mg/kg BW) and sandalwood oil (1g/kg BW) for an week modulated parameters such as body weight, blood glucose, serum bilirubin, liver glycogen, and lipid peroxides contents to normoglycemic levels in the alloxan-induced diabetic mice. Similarly, intraperitoneal administration of α-santalol (100mg/kg BW) and sandalwood oil (1g/kg BW) for two weeks modulated parameters such as serum aminotransferases, alkaline phosphatase, bilirubin, superoxide dismutase, catalase, free sulfhydryl, protein carbonyl, nitric oxide, liver lipid peroxide contents, and antioxidant capacity in d-galactose mediated oxidative stress induced mice. Besides, it was observed that the beneficial effects of α-santalol were well complimented, differentially by other constituents present in sandalwood oil, thus indicating synergism in biological activity of this traditionally used bioresource.
Plant Journal | 2016
Sisi Geng; Biswapriya B. Misra; Evaldo de Armas; David V. Huhman; Hans T. Alborn; Lloyd W. Sumner; Sixue Chen
Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2 ) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography-mass spectrometry (MS); liquid chromatography (LC)-multiple reaction monitoring-MS; and ultra-high-performance LC-quadrupole time-of-flight-MS. A total of 358 metabolites from guard cells were quantified in a time-course response to elevated CO2 level. Most metabolites increased under elevated CO2 , showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2 -induced stomatal closure is mediated by JA signaling.
Journal of Proteomics | 2016
Islam Mostafa; Ning Zhu; Mi-Jeong Yoo; Kelly Balmant; Biswapriya B. Misra; Craig Dufresne; Maged Abou-Hashem; Sixue Chen; Maher M. El-Domiaty
UNLABELLED Glucosinolates present in Brassicales are important for human health and plant defense against insects and pathogens. Here we investigate the proteomes and metabolomes of Arabidopsis myb28/29 and cyp79B2/B3 mutants deficient in aliphatic glucosinolates and indolic glucosinolates, respectively. Quantitative proteomics of the myb28/29 and cyp79B2/B3 mutants led to the identification of 2785 proteins, of which 142 proteins showed significant changes in the two mutants compared to wild type (WT). By mapping the differential proteins using STRING, we detected 59 new edges in the glucosinolate metabolic network. These connections can be classified as primary with direct roles in glucosinolate metabolism, secondary related to plant stress responses, and tertiary involved in other biological processes. Gene Ontology analysis of the differential proteins showed high level of enrichment in the nodes belonging to metabolic process including glucosinolate biosynthesis and response to stimulus. Using metabolomics, we quantified 292 metabolites covering a broad spectrum of metabolic pathways, and 89 exhibited differential accumulation patterns between the mutants and WT. The changing metabolites (e.g., γ-glutamyl amino acids, auxins and glucosinolate hydrolysis products) complement our proteomics findings. This study contributes toward engineering and breeding of glucosinolate profiles in plants in efforts to improve human health, crop quality and productivity. BIOLOGICAL SIGNIFICANCE Glucosinolates in Brassicales constitute an important group of natural metabolites important for plant defense and human health. Its biosynthetic pathways and transcriptional regulation have been well-studied. Using Arabidopsis mutants of important genes in glucosinolate biosynthesis, quantitative proteomics and metabolomics led to identification of many proteins and metabolites that are potentially related to glucosinolate metabolism. This study provides a comprehensive insight into the molecular networks of glucosinolate metabolism, and will facilitate efforts toward engineering and breeding of glucosinolate profiles for enhanced crop defense, and nutritional value.