Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bita Sahaf is active.

Publication


Featured researches published by Bita Sahaf.


Science Translational Medicine | 2009

Measurement and clinical monitoring of human lymphocyte clonality by massively parallel VDJ pyrosequencing

Scott D. Boyd; Eleanor L. Marshall; Jason D. Merker; Jay M. Maniar; Lyndon N. Zhang; Bita Sahaf; Carol Jones; Birgitte B. Simen; Bozena Hanczaruk; Khoa D. Nguyen; Kari C. Nadeau; Michael Egholm; David B. Miklos; James L. Zehnder; Andrew Fire

Massively parallel sequencing of rearranged immune receptor genes permits detection and tracking of specific immune cell populations in normal and pathological contexts. Like a reporter who serially unearths fragments of a story until a plausible picture of the latest scandal emerges, scientists have over time gathered pieces of the vast amount of information inherent in the highly recombined genes of the human immune system—probing their complexity, seeking a disease diagnosis, or hunting for evidence of remission. Back in 1987, Susumu Tonegawa won the Nobel Prize in Physiology or Medicine for discovering the genetics behind the diversity of human antibodies—a process called V-D-J recombination. Now, more than 20 years later, scientists at Stanford University and 454 Life Sciences have used powerful next-generation DNA sequencing technology to comprehensively characterize the products of V-D-J recombination in both cancer patients and healthy volunteers. Indeed, this ability to exhaustively profile the human immune response will help to untangle some of biomedicine’s most knotty problems—cancer, autoimmune disease, and vaccine development. B and T lymphocytes, cells of the adaptive immune system, build the blueprints for myriad antigen-recognizing proteins—immunoglobulins (Ig) and T cell receptors—by recombination within variable (V), diversity (D), and joining (J) gene segments to rearrange the intervening highly variable DNA sequences that can specify numerous antigen recognition domains. All of this reassortment creates a repertoire of receptors that recognizes scads of molecules from foreign invaders (antigens), a process that spurs the immune system to respond to the threat. When an immune cell sporting a particular antigen receptor finds and binds its matching antigen, the cell divides repeatedly, giving rise to many genetically identical lymphocytes that target a particular antigen for elimination. In contrast to this vibrant diversity of healthy immune systems, those of people with B lymphocyte– or T lymphocyte–based cancers (lymphomas or leukemias) generate cells that express a single dominant (clonal) receptor. In the new work, Boyd et al. performed massively parallel DNA sequencing of rearranged IgH gene loci in blood and tissue samples from cancer patients and healthy people to examine the diversity of their B cells, the immune cells that make antibodies. To this end, they amplified the rearranged IgH B cell DNA with a series of primers and the polymerase chain reaction to generate bar-coded, amplified DNA mixtures. These samples were then sequenced and the information was analyzed to determine which DNA segments had been joined to generate the blueprints for the IgH immune molecules. The experimental design used by Boyd et al. employs a high-throughput deep sequencing machine and can accommodate up to 150 samples at a time, providing an intricate snapshot of the immune repertoire. From healthy individuals, the authors were able to estimate the normal complexity of the B cell repertoire. With samples from the cancer patients, they obtained disease-specific signatures of clonal B cell proliferation events. For example, in a lymph node sample from one patient, deep sequencing detected two distinct V-D-J rearrangements. This finding indicates that there were two separate clonal B cell populations in this specimen and, therefore, two different B cell lymphomas. Such signatures could be obtained at the time of disease diagnosis and then monitored on an ongoing basis and thereby used to assess the effects of anticancer therapies that target these clonal populations or for early detection of disease relapse. Characterization of immune cell populations by deep sequencing also may illuminate fundamental aspects of infectious and autoimmune diseases as well as the body’s response to vaccination, gene and cell therapies, and other surgical procedures. The complex repertoire of immune receptors generated by B and T cells enables recognition of diverse threats to the host organism. Here, we show that massively parallel DNA sequencing of rearranged immune receptor loci can provide direct detection and tracking of immune diversity and expanded clonal lymphocyte populations in physiological and pathological contexts. DNA was isolated from blood and tissue samples, a series of redundant primers was used to amplify diverse DNA rearrangements, and the resulting mixtures of bar-coded amplicons were sequenced with long-read ultradeep sequencing. Individual DNA molecules were then characterized on the basis of DNA segments that had been joined to make a functional (or nonfunctional) immune effector. Current experimental designs can accommodate up to 150 samples in a single sequence run, with the depth of sequencing sufficient to identify stable and dynamic aspects of the immune repertoire in both normal and diseased circumstances. These data provide a high-resolution picture of immune spectra in normal individuals and in patients with hematological malignancies, illuminating, in the latter case, both the initial behavior of clonal tumor populations and the later suppression or reemergence of such populations after treatment.


Journal of Immunology | 2010

Individual Variation in the Germline Ig Gene Repertoire Inferred from Variable Region Gene Rearrangements

Scott D. Boyd; Bruno A. Gaëta; Katherine J. L. Jackson; Andrew Fire; Eleanor L. Marshall; Jason D. Merker; Jay M. Maniar; Lyndon N. Zhang; Bita Sahaf; Carol Jones; Birgitte B. Simen; Bozena Hanczaruk; Khoa D. Nguyen; Kari C. Nadeau; Michael Egholm; David B. Miklos; James L. Zehnder; Andrew M. Collins

Individual variation in the Ig germline gene repertoire leads to individual differences in the combinatorial diversity of the Ab repertoire, but the study of such variation has been problematic. The application of high-throughput DNA sequencing to the study of rearranged Ig genes now makes this possible. The sequencing of thousands of VDJ rearrangements from an individual, either from genomic DNA or expressed mRNA, should allow their germline IGHV, IGHD, and IGHJ repertoires to be inferred. In addition, where previously mere glimpses of diversity could be gained from sequencing studies, new large data sets should allow the rearrangement frequency of different genes and alleles to be seen with clarity. We analyzed the DNA of 108,210 human IgH chain rearrangements from 12 individuals and determined their individual IGH genotypes. The number of reportedly functional IGHV genes and allelic variants ranged from 45 to 60, principally because of variable levels of gene heterozygosity, and included 14 previously unreported IGHV polymorphisms. New polymorphisms of the IGHD3-16 and IGHJ6 genes were also seen. At heterozygous loci, remarkably different rearrangement frequencies were seen for the various IGHV alleles, and these frequencies were consistent between individuals. The specific alleles that make up an individuals Ig genotype may therefore be critical in shaping the combinatorial repertoire. The extent of genotypic variation between individuals is highlighted by an individual with aplastic anemia who appears to lack six contiguous IGHD genes on both chromosomes. These deletions significantly alter the potential expressed IGH repertoire, and possibly immune function, in this individual.


Proceedings of the National Academy of Sciences of the United States of America | 2011

High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment

Aaron C Logan; Hong Gao; Chunlin Wang; Bita Sahaf; Carol Jones; Eleanor L. Marshall; Ismael Buño; Randall Armstrong; Andrew Fire; Kenneth I. Weinberg; Michael Mindrinos; James L. Zehnder; Scott D. Boyd; Wenzhong Xiao; Ronald W. Davis; David B. Miklos

The primary cause of poor outcome following allogeneic hematopoietic cell transplantation (HCT) for chronic lymphocytic leukemia (CLL) is disease recurrence. Detection of increasing minimal residual disease (MRD) following HCT may permit early intervention to prevent clinical relapse; however, MRD quantification remains an uncommon diagnostic test because of logistical and financial barriers to widespread use. Here we describe a method for quantifying CLL MRD using widely available consensus primers for amplification of all Ig heavy chain (IGH) genes in a mixture of peripheral blood mononuclear cells, followed by high-throughput sequencing (HTS) for disease-specific IGH sequence quantification. To achieve accurate MRD quantification, we developed a systematic bioinformatic methodology to aggregate cancer clone sequence variants arising from systematic and random artifacts occurring during IGH-HTS. We then compared the sensitivity of IGH-HTS, flow cytometry, and allele-specific oligonucleotide PCR for MRD quantification in 28 samples collected from 6 CLL patients following allogeneic HCT. Using amplimer libraries generated with consensus primers from patient blood samples, we demonstrate the sensitivity of IGH-HTS with 454 pyrosequencing to be 10−5, with a high correlation between quantification by allele-specific oligonucleotide PCR and IGH-HTS (r = 0.85). From the same dataset used to quantify MRD, IGH-HTS also allowed us to profile IGH repertoire reconstitution after HCT—information not provided by the other MRD methods. IGH-HTS using consensus primers will broaden the availability of MRD quantification in CLL and other B cell malignancies, and this approach has potential for quantitative evaluation of immune diversification following transplant and nontransplant therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Lymphocyte surface thiol levels

Bita Sahaf; Kartoosh Heydari; Leonard A. Herzenberg; Leonore A. Herzenberg

Recent studies have implicated reduced thiols (cysteine −SH) in the function of individual cell surface proteins. Studies presented here demonstrate that the overall level of reduced thiols on cell surface molecules differs on individual subsets of peripheral blood mononuclear cells and that these levels can be manipulated in vitro by altering the level of intracellular glutathione (iGSH). To quantitate cell surface thiols, we have developed a Hi-D (11-color) fluorescence-activated cell sorter method in which we covalently couple a fluorescent molecule, Alexa-maleimide, to free (reduced) –SH groups on proteins or other molecules exposed on the cell surface (exofacial membrane). In addition, to reveal changes in cell surface thiol levels in response to various in vitro treatments, we used a pair of fluorescent Alexa dyes with distinct excitation and emission spectra to stain the cells before and after treatments. These in vitro studies demonstrate that decreasing iGSH, by specifically inhibiting its synthesis, decreases cell surface molecule thiols (csm−SH) and that preventing loss of iGSH also prevents loss of csm−SH. However, examination of peripheral blood mononuclear cell subsets tested immediately after isolation from healthy or HIV-infected subjects failed to reveal a similar relationship between internal iGSH and csm−SH. Although there is a relatively wide variation between individuals in both csm−SH and iGSH, there is no correlation between median iGSH and csm−SH compared for 22 healthy and 36 HIV-infected subjects. Collectively, our findings indicate that local environment plays a greater role in determining the redox status of cell surface molecules than the internal redox status of the cells.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal

Sonia Salzano; Paola Checconi; Eva-Maria Hanschmann; Christopher Horst Lillig; Lucas D. Bowler; Philippe Chan; David Vaudry; Manuela Mengozzi; Lucia Coppo; Sandra Sacre; Kondala R. Atkuri; Bita Sahaf; Leonard A. Herzenberg; Leonore A. Herzenberg; Lisa Mullen; Pietro Ghezzi

Significance Inflammation often complicates diseases associated with oxidative stress. This study shows that inflammatory macrophages release proteins with specific forms of cysteine oxidation to disulfides, particularly glutathionylation. Redox proteomics identified peroxiredoxin 2 (PRDX2) as a protein released in glutathionylated form by inflammation both in vivo and in vitro. Extracellular PRDX2 then triggers the production of TNF-α. These data indicate that redox-dependent mechanisms, in an oxidative cascade, can induce inflammation. The mechanism by which oxidative stress induces inflammation and vice versa is unclear but is of great importance, being apparently linked to many chronic inflammatory diseases. We show here that inflammatory stimuli induce release of oxidized peroxiredoxin-2 (PRDX2), a ubiquitous redox-active intracellular enzyme. Once released, the extracellular PRDX2 acts as a redox-dependent inflammatory mediator, triggering macrophages to produce and release TNF-α. The oxidative coupling of glutathione (GSH) to PRDX2 cysteine residues (i.e., protein glutathionylation) occurs before or during PRDX2 release, a process central to the regulation of immunity. We identified PRDX2 among the glutathionylated proteins released in vitro by LPS-stimulated macrophages using mass spectrometry proteomic methods. Consistent with being part of an inflammatory cascade, we find that PRDX2 then induces TNF-α release. Unlike classical inflammatory cytokines, PRDX2 release does not reflect LPS-mediated induction of mRNA or protein synthesis; instead, PRDX2 is constitutively present in macrophages, mainly in the reduced form, and is released in the oxidized form on LPS stimulation. Release of PRDX2 is also observed in human embryonic kidney cells treated with TNF-α. Importantly, the PRDX2 substrate thioredoxin (TRX) is also released along with PRDX2, enabling an oxidative cascade that can alter the –SH status of surface proteins and thereby facilitate activation via cytokine and Toll-like receptors. Thus, our findings suggest a model in which the release of PRDX2 and TRX from macrophages can modify the redox status of cell surface receptors and enable induction of inflammatory responses. This pathway warrants further exploration as a potential novel therapeutic target for chronic inflammatory diseases.


Blood | 2012

Prophylactic rituximab after allogeneic transplantation decreases B-cell alloimmunity with low chronic GVHD incidence

Sally Arai; Bita Sahaf; Balasubramanian Narasimhan; George L. Chen; Carol Jones; Robert Lowsky; Judith A. Shizuru; Laura J. Johnston; Ginna G. Laport; Wen-Kai Weng; Jonathan Benjamin; Joanna Schaenman; Janice M. Brown; Jessica Ramirez; James L. Zehnder; Robert S. Negrin; David B. Miklos

B cells are involved in the pathogenesis of chronic GVHD (cGVHD). We hypothesized that prophylactic anti-B-cell therapy delivered 2 months after transplantation would decrease allogeneic donor B-cell immunity and possibly the incidence of cGVHD. Therefore, in the present study, patients with high-risk chronic lymphocytic leukemia (n = 22) and mantle-cell lymphoma (n = 13) received a total lymphoid irradiation of 80 cGy for 10 days and antithymocyte globulin 1.5 mg/kg/d for 5 days. Rituximab (375 mg/m(2)) was infused weekly on days 56, 63, 70, and 77 after transplantation. The incidence of acute GVHD was 6%. The cumulative incidence of cGVHD was 20%. Nonrelapse mortality was 3%. Rituximab treatment after allogeneic transplantation significantly reduced B-cell allogeneic immunity, with complete prevention of alloreactive H-Y Ab development in male patients with female donors (P = .01). Overall survival and freedom from progression at 4 years for chronic lymphocytic leukemia patients were 73% and 47%, respectively; for mantle-cell lymphoma patients, they were 69% and 53%, respectively.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Culturing of human peripheral blood cells reveals unsuspected lymphocyte responses relevant to HIV disease

Bita Sahaf; Kondala R. Atkuri; Kartoosh Heydari; Meena Malipatlolla; Jay Rappaport; Emmanuel G. Régulier; Leonard A. Herzenberg; Leonore A. Herzenberg

Recombinant HIV-Tat (Tat) induces extensive apoptosis in peripheral blood mononuclear cells (PBMCs) cultured in typical CO2 incubators, which are equilibrated with air (21% O2). However, as we show here, Tat apoptosis induction fails in PBMCs cultured at physiological oxygen levels (5% O2). Under these conditions, Tat induces PBMCs to divide, efficiently primes them for HIV infection, and supports virus production by the infected cells. Furthermore, Tat takes only 2 h to prime PBMCs under these conditions. In contrast, PHA/IL-2, which is widely used to prime cells for HIV infection, takes 2–3 days. These findings strongly recommend culturing primary cells at physiological oxygen levels. In addition, they suggest HIV-Tat as a key regulator of HIV disease progression.


Blood | 2015

Allogeneic HY antibodies detected 3 months after female-to-male HCT predict chronic GVHD and nonrelapse mortality in humans

Hideki Nakasone; Lu Tian; Bita Sahaf; Takakazu Kawase; Kelsi Schoenrock; Spenser Perloff; Christine E. Ryan; Jed Paul; Rakesh Popli; Fang Wu; Joanne Otani; John A. Coller; Edus H. Warren; David B. Miklos

Allogeneic antibodies against minor histocompatibility antigens encoded on the Y chromosome (HY-Abs) develop after hematopoietic cell transplant (HCT) of male recipients with female donors (F→M). However, the temporal association between HY-Ab development and chronic graft-versus-host disease (cGVHD) has yet to be elucidated. We studied 136 adult F→M HCT patients, with plasma prospectively collected through 3 years posttransplant, and measured immunoglobulin G against 6 H-Y antigens. Multiple HY-Abs were frequently detected beginning at 3 months posttransplant: 78 (57%) of F→M patients were seropositive for at least 1 of the 6 HY-Abs, and 3-month seropositivity for each HY-Ab was associated with a persistent seropositive response throughout the posttransplant follow-up period (P < .001 in each). There were no associations between pretransplant features and 3-month overall HY-Ab development. Detection of multiple HY-Abs at 3 months (represented by HY score) was significantly associated with an increased risk of cGVHD (P < .0001) and nonrelapse mortality (P < .01). Compared to clinical factors alone, the addition of HY score to clinical factors improved the predictive potential of cGVHD (P < .01). Monitoring HY-Ab development thus stratifies cGVHD risk in F→M HCT patients and may support preemptive prophylaxis therapy for cGVHD beginning at 3 months posttransplant.


Proceedings of the National Academy of Sciences of the United States of America | 2013

H–Y antigen-binding B cells develop in male recipients of female hematopoietic cells and associate with chronic graft vs. host disease

Bita Sahaf; Yufeng Yang; Sally Arai; Leonore A. Herzenberg; David B. Miklos

B cells are known to play an important role in pathogenesis of human chronic graft vs. host disease (cGVHD). Our group has previously shown that IgG allo-antibodies recognize Y chromosome-encoded proteins (H–Y) and a dominant H–Y epitope, DEAD box protein (DBY-2) detectable 6–12 mo after transplant in male patients who receive grafts from female donors (F→M) hematopoietic cell transplantation (HCT). Here we present FACS studies of peripheral blood mononuclear cells collected 6 mo after transplant showing that 16 of 28 (57%) F→M HCT patients have circulating donor B cells that express B-cell receptor (mainly IgM and Igλ) specific for DBY-2. The detection of these DBY-2 B cells 6 mo after HCT are associated with cGVHD development (P = 0.004). Specifically, 15 of 16 F→M with DBY-2 B cells developed cGVHD. In contrast, cGVHD developed in only 5 of the 12 who did not have DBY-2 B cells detected. This demonstrates circulating human B cells binding an alloantigen (DBY-2) and that these DBY-2–specific B cells appear before development of cGVHD in roughly half of the F→M patients. Our study suggests that detection of anti–DBY-2 B cells may predict cGVHD and that this prediction may have clinical utility. Validation of this hypothesis will require larger prospective studies.


Blood | 2016

Ibrutinib efficacy and tolerability in patients with relapsed chronic lymphocytic leukemia following allogeneic HCT.

Christine E. Ryan; Bita Sahaf; Aaron C Logan; Susan O'Brien; John C. Byrd; Peter Hillmen; Jennifer R. Brown; Martin J. S. Dyer; Anthony R Mato; Michael J. Keating; Samantha Jaglowski; Fong Clow; Andrew R. Rezvani; Lori Styles; Steven Coutre; David B. Miklos

Ibrutinib, a potent and irreversible small-molecule inhibitor of both Brutons tyrosine kinase and interleukin-2 inducible kinase (ITK), has been used to treat relapsed/refractory chronic lymphocytic leukemia (CLL) with prolongation of progression-free and overall survival. Here, we present 27 patients with relapsed CLL following allogeneic hematopoietic cell transplant (HCT) who subsequently received ibrutinib salvage therapy. Sixteen of these patients were part of multi-institutional clinical trials and achieved an overall response rate of 87.5%. An additional 11 patients were treated at Stanford University following US Food and Drug Administration approval of ibrutinib; 7 (64%) achieved a complete response, and 3 (27%) achieved a partial response. Of the 9 patients treated at Stanford who had mixed chimerism-associated CLL relapse, 4 (44%) converted to full donor chimerism following ibrutinib initiation, in association with disease response. Four of 11 (36%) patients evaluated by ClonoSeq achieved minimal residual disease negativity with CLL <1/10 000 white blood cells, which persisted even after ibrutinib was discontinued, in 1 case even after 26 months. None of the 27 patients developed graft-versus-host-disease (GVHD) following ibrutinib initiation. We postulate that ibrutinib augments the graft-versus-leukemia (GVL) benefit through a T-cell-mediated effect, most likely due to ITK inhibition. To investigate the immune modulatory effects of ibrutinib, we completed comprehensive immune phenotype characterization of peripheral B and T cells from treated patients. Our results show that ibrutinib selectively targets pre-germinal B cells and depletes Th2 helper cells. Furthermore, these effects persisted after drug discontinuation. In total, our results provide evidence that ibrutinib effectively augments GVL without causing GVHD.

Collaboration


Dive into the Bita Sahaf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron C Logan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge