Biuse Guivernau
Pompeu Fabra University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Biuse Guivernau.
Molecular Membrane Biology | 2014
Marta Tajes; Eva Ramos-Fernández; Xian Weng-Jiang; Mònica Bosch-Morató; Biuse Guivernau; Abel Eraso-Pichot; Bertrán Salvador; Xavier Fernàndez-Busquets; Jaume Roquer; Francisco J. Muñoz
Abstract The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.
Brain Research | 2014
Alba Bellot; Biuse Guivernau; Marta Tajes; Mònica Bosch-Morató; Victòria Valls-Comamala; Francisco J. Muñoz
Dendritic spines are actin-rich protrusions from the dendritic shaft, considered to be the locus where most synapses occur, as they receive the vast majority of excitatory connections in the central nervous system (CNS). Interestingly, hippocampal spines are plastic structures that contain a dense array of molecules involved in postsynaptic signaling and synaptic plasticity. Since changes in spine shape and size are correlated with the strength of excitatory synapses, spine morphology directly reflects spine function. Therefore several neuropathologies are associated with defects in proteins located at the spines. The present work is focused on the spine actin cytoskeleton attending to its structure and function mainly in glutamatergic neurons. It addresses the study of the structural plasticity of dendritic spines associated with long-term potentiation (LTP) and the mechanisms that underlie learning and memory formation. We have integrated the current knowledge on synaptic proteins to relate this plethora of molecules with actin and actin-binding proteins. We further included recent findings that outline key uncharacterized proteins that would be useful to unveil the real ultrastructure and function of dendritic spines. Furthermore, this review is directed to understand how such spine diversity and interplay contributes to the regulation of spine morphogenesis and dynamics. It highlights their physiological relevance in the brain function, as well as it provides insights for pathological processes affecting dramatically dendritic spines, such as Alzheimers disease.
Oxidative Medicine and Cellular Longevity | 2013
Marta Tajes; Gerard ILL-Raga; Ernest Palomer; Eva Ramos-Fernández; Francesc X. Guix; Mònica Bosch-Morató; Biuse Guivernau; Jordi Jimenez-Conde; Angel Ois; Fernando J. Pérez-Asensio; Mario Reyes-Navarro; Carolina Caballo; Ana M. Galan; Francesc Alameda; Gines Escolar; Carlos Opazo; Anna M. Planas; Jaume Roquer; Miguel A. Valverde; Francisco J. Muñoz
Ischemic stroke is an acute vascular event that obstructs blood supply to the brain, producing irreversible damage that affects neurons but also glial and brain vessel cells. Immediately after the stroke, the ischemic tissue produces nitric oxide (NO) to recover blood perfusion but also produces superoxide anion. These compounds interact, producing peroxynitrite, which irreversibly nitrates protein tyrosines. The present study measured NO production in a human neuroblastoma (SH-SY5Y), a murine glial (BV2), a human endothelial cell line (HUVEC), and in primary cultures of human cerebral myocytes (HC-VSMCs) after experimental ischemia in vitro. Neuronal, endothelial, and inducible NO synthase (NOS) expression was also studied up to 24 h after ischemia, showing a different time course depending on the NOS type and the cells studied. Finally, we carried out cell viability experiments on SH-SY5Y cells with H2O2, a prooxidant agent, and with a NO donor to mimic ischemic conditions. We found that both compounds were highly toxic when they interacted, producing peroxynitrite. We obtained similar results when all cells were challenged with peroxynitrite. Our data suggest that peroxynitrite induces cell death and is a very harmful agent in brain ischemia.
Neurologia | 2016
Mercè Boada; Eva Ramos-Fernández; Biuse Guivernau; Francisco J. Muñoz; M. Costa; A.M. Ortiz; J.I. Jorquera; L. Núñez; M. Torres; A. Páez
INTRODUCTION There is a growing interest in new therapeutic strategies for the treatment of Alzheimer disease (AD) which focus on reducing the beta-amyloid peptide (Aβ) burden in the brain by sequestering plasma Aβ, a large proportion of which is bound to albumin and other proteins. This review discusses the concepts of interaction between Aβ and albumin that have given rise to AMBAR (Alzheimers Disease Management by Albumin Replacement) project, a new multicentre, randomised, controlled clinical trial for the treatment of AD. DEVELOPMENT Results from preliminary research suggest that Albutein(®) (therapeutic albumin, Grifols) contains no quantifiable levels of Aβ. Studies also show that Albutein(®) has Aβ binding capacity. On the other hand, AD entails a high level of nitro-oxidative stress associated with fibrillar aggregates of Aβ that can induce albumin modification, thus affecting its biological functions. Results from the phase ii study confirm that using therapeutic apheresis to replace endogenous albumin with Albutein(®) 5% is feasible and safe in patients with AD. This process resulted in mobilisation of Aβ and cognitive improvement in treated patients. The AMBAR study will test combination therapy with therapeutic apheresis and haemopheresis with the possible leverage effect of Albutein(®) with intravenous immunoglobulin replacement (Flebogamma(®) DIF). Cognitive, functional, and behavioural changes in patients with mild to moderate AD will be assessed. CONCLUSIONS the AMBAR study represents a new therapeutic perspective for AD.
Neuroscience Letters | 2014
Marta Tajes; Abel Eraso-Pichot; Fanny Rubio-Moscardo; Biuse Guivernau; Mònica Bosch-Morató; Victòria Valls-Comamala; Francisco J. Muñoz
Alzheimers disease (AD) is characterized by the oxidative stress generated from amyloid β-peptide (Aβ) aggregates. It produces protein nitrotyrosination, after the reaction with nitric oxide to form peroxynitrite, being triosephosphate isomerase (TPI) one of the most affected proteins. TPI is a glycolytic enzyme that catalyzes the interconversion between glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). Methylglyoxal (MG) is a by-product of TPI activity whose production is triggered when TPI is nitrotyrosinated. MG is harmful to cells because it glycates proteins. Here we found protein glycation when human neuroblastoma cells were treated with Aβ. Moreover glycation was also observed when neuroblastoma cells overexpressed mutated TPI where Tyr165 or Tyr209, the two tyrosines close to the catalytic center, were changed by Phe in order to mimic the effect of nitrotyrosination. The pathological relevance of these findings was studied by challenging cells with Aβ oligomers and MG. A significant decrease in mitochondrial transmembrane potential, one of the first apoptotic events, was obtained. Therefore, increasing concentrations of MG were assayed searching for MG effect in neuronal apoptosis. We found a decrease of the protective Bcl2 and an increase of the proapoptotic caspase-3 and Bax levels. Our results suggest that MG is triggering apoptosis in neurons and it would play a key role in AD neurodegeneration.
Journal of Alzheimer's Disease | 2014
Eva Ramos-Fernández; Marta Tajes; Ernest Palomer; Gerard ILL-Raga; Mònica Bosch-Morató; Biuse Guivernau; Irene Román-Dégano; Abel Eraso-Pichot; Daniel Alcolea; Juan Fortea; Laura Núñez; Antonio Páez; Francesc Alameda; Xavier Fernàndez-Busquets; Alberto Lleó; Roberto Elosua; Mercè Boada; Miguel A. Valverde; Francisco J. Muñoz
Glycation and nitrotyrosination are pathological posttranslational modifications that make proteins prone to losing their physiological properties. Since both modifications are increased in Alzheimers disease (AD) due to amyloid-β peptide (Aβ) accumulation, we have studied their effect on albumin, the most abundant protein in cerebrospinal fluid and blood. Brain and plasmatic levels of glycated and nitrated albumin were significantly higher in AD patients than in controls. In vitro turbidometry and electron microscopy analyses demonstrated that glycation and nitrotyrosination promote changes in albumin structure and biochemical properties. Glycated albumin was more resistant to proteolysis and less uptake by hepatoma cells occurred. Glycated albumin also reduced the osmolarity expected for a solution containing native albumin. Both glycation and nitrotyrosination turned albumin cytotoxic in a cell type-dependent manner for cerebral and vascular cells. Finally, of particular relevance to AD, these modified albumins were significantly less effective in avoiding Aβ aggregation than native albumin. In summary, nitrotyrosination and especially glycation alter albumin structural and biochemical properties, and these modifications might contribute for the progression of AD.
Journal of Alzheimer's Disease | 2014
Marta Tajes; Abel Eraso-Pichot; Fanny Rubio-Moscardo; Biuse Guivernau; Eva Ramos-Fernández; Mònica Bosch-Morató; Francesc X. Guix; Jordi Clarimón; Gian Pietro Miscione; Mercè Boada; Gabriel Gil-Gómez; Toshiharu Suzuki; Henrik Molina; Jordi Villà-Freixa; Rubén Vicente; Francisco J. Muñoz
Amyloid-β peptide (Aβ) aggregates induce nitro-oxidative stress, contributing to the characteristic neurodegeneration found in Alzheimers disease (AD). One of the most strongly nitrotyrosinated proteins in AD is the triosephosphate isomerase (TPI) enzyme which regulates glycolytic flow, and its efficiency decreased when it is nitrotyrosinated. The main aims of this study were to analyze the impact of TPI nitrotyrosination on cell viability and to identify the mechanism behind this effect. In human neuroblastoma cells (SH-SY5Y), we evaluated the effects of Aβ42 oligomers on TPI nitrotyrosination. We found an increased production of methylglyoxal (MG), a toxic byproduct of the inefficient nitro-TPI function. The proapoptotic effects of Aβ42 oligomers, such as decreasing the protective Bcl2 and increasing the proapoptotic caspase-3 and Bax, were prevented with a MG chelator. Moreover, we used a double mutant TPI (Y165F and Y209F) to mimic nitrosative modifications due to Aβ action. Neuroblastoma cells transfected with the double mutant TPI consistently triggered MG production and a decrease in cell viability due to apoptotic mechanisms. Our data show for the first time that MG is playing a key role in the neuronal death induced by Aβ oligomers. This occurs because of TPI nitrotyrosination, which affects both tyrosines associated with the catalytic center.
The Journal of Neuroscience | 2016
Biuse Guivernau; Jaume Bonet; Valls-Comamala; Mònica Bosch-Morató; Juan A. Godoy; Nibaldo C. Inestrosa; Alex Perálvarez-Marín; Fernández-Busquets X; Andreu D; Baldomero Oliva; Francisco J. Muñoz
Alzheimers disease (AD) is a neurodegenerative disorder characterized by the pathological aggregation of the amyloid-β peptide (Aβ). Monomeric soluble Aβ can switch from helicoidal to β-sheet conformation, promoting its assembly into oligomers and subsequently to amyloid fibrils. Oligomers are highly toxic to neurons and have been reported to induce synaptic transmission impairments. The progression from oligomers to fibrils forming senile plaques is currently considered a protective mechanism to avoid the presence of the highly toxic oligomers. Protein nitration is a frequent post-translational modification under AD nitrative stress conditions. Aβ can be nitrated at tyrosine 10 (Y10) by peroxynitrite. Based on our analysis of ThT binding, Western blot and electron and atomic force microscopy, we report that Aβ nitration stabilizes soluble, highly toxic oligomers and impairs the formation of fibrils. We propose a mechanism by which fibril elongation is interrupted upon Y10 nitration: Nitration disrupts fibril-forming folds by preventing H14-mediated bridging, as shown with an Aβ analog containing a single residue (H to E) replacement that mimics the behavior of nitrated Aβ related to fibril formation and neuronal toxicity. The pathophysiological role of our findings in AD was highlighted by the study of these nitrated oligomers on mouse hippocampal neurons, where an increased NMDAR-dependent toxicity of nitrated Aβ oligomers was observed. Our results show that Aβ nitrotyrosination is a post-translational modification that increases Aβ synaptotoxicity. SIGNIFICANCE STATEMENT We report that nitration (i.e., the irreversible addition of a nitro group) of the Alzheimer-related peptide amyloid-β (Aβ) favors the stabilization of highly toxic oligomers and inhibits the formation of Aβ fibrils. The nitrated Aβ oligomers are more toxic to neurons due to increased cytosolic calcium levels throughout their action on NMDA receptors. Sustained elevated calcium levels trigger excitotoxicity, a characteristic event in Alzheimers disease.
Oncotarget | 2016
Mònica Bosch-Morató; Cinta Iriondo; Biuse Guivernau; Victòria Valls-Comamala; N. Vidal; Montse Olivé; Henry Querfurth; Francisco Muñoz
GNE myopathy is an autosomal recessive muscular disorder of young adults characterized by progressive skeletal muscle weakness and wasting. It is caused by a mutation in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene, which encodes a key enzyme in sialic acid biosynthesis. The mutated hypofunctional GNE is associated with intracellular accumulation of amyloid β-peptide (Aβ) in patient muscles through as yet unknown mechanisms. We found here for the first time that an experimental reduction in sialic acid favors Aβ1-42 endocytosis in C2C12 myotubes, which is dependent on clathrin and heparan sulfate proteoglycan. Accordingly, Aβ1-42 internalization in myoblasts from a GNE myopathy patient was enhanced. Next, we investigated signal changes triggered by Aβ1-42 that may underlie toxicity. We observed that p-Akt levels are reduced in step with an increase in apoptotic markers in GNE myopathy myoblasts compared to control myoblasts. The same results were experimentally obtained when Aβ1-42 was overexpressed in myotubes. Hence, we propose a novel disease mechanism whereby hyposialylation favors Aβ1-42 internalization and the subsequent apoptosis in myotubes and in skeletal muscle from GNE myopathy patients.
Oncotarget | 2016
Eva Ramos-Fernández; Marta Tajes; Gerard ILL-Raga; Lina M. Vargas; Arnau Busquets-Garcia; Mònica Bosch-Morató; Biuse Guivernau; Victòria Valls-Comamala; Maria Gomis; Cristina Grau; César Fandos; Mark D. Rosen; Michael H. Rabinowitz; Nibaldo C. Inestrosa; Rafael Maldonado; Xavier Altafaj; Andrés Ozaita; Alejandra R. Alvarez; Rubén Vicente; Miguel A. Valverde; Francisco Muñoz
The activation of N-Methyl D-Aspartate Receptor (NMDAR) by glutamate is crucial in the nervous system function, particularly in memory and learning. NMDAR is composed by two GluN1 and two GluN2 subunits. GluN2B has been reported to participate in the prevalent NMDAR subtype at synapses, the GluN1/2A/2B. Here we studied the regulation of GluN2B expression in cortical neurons finding that glutamate up-regulates GluN2B translation through the action of nitric oxide (NO), which induces the phosphorylation of the eukaryotic translation initiation factor 2 α (eIF2α). It is a process mediated by the NO-heme-regulated eIF2α kinase (HRI), as the effect was avoided when a specific HRI inhibitor or a HRI small interfering RNA (siHRI) were used. We found that the expressed GluN2B co-localizes with PSD-95 at the postsynaptic ending, which strengthen the physiological relevance of the proposed mechanism. Moreover the receptors bearing GluN2B subunits upon NO stimulation are functional as high Ca2+ entry was measured and increases the co-localization between GluN2B and GluN1 subunits. In addition, the injection of the specific HRI inhibitor in mice produces a decrease in memory retrieval as tested by the Novel Object Recognition performance. Summarizing our data suggests that glutamatergic stimulation induces HRI activation by NO to trigger GluN2B expression and this process would be relevant to maintain postsynaptic activity in cortical neurons.