Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Biyi Chen is active.

Publication


Featured researches published by Biyi Chen.


Circulation Research | 2010

T-Tubule Remodeling During Transition From Hypertrophy to Heart Failure

Sheng Wei; Ang Guo; Biyi Chen; William Kutschke; Yu-Ping Xie; Kathy Zimmerman; Robert M. Weiss; Mark E. Anderson; Heping Cheng; Long-Sheng Song

Rationale: The transverse tubule (T-tubule) system is the ultrastructural substrate for excitation–contraction coupling in ventricular myocytes; T-tubule disorganization and loss are linked to decreased contractility in end stage heart failure (HF). Objective: We sought to examine (1) whether pathological T-tubule remodeling occurs early in compensated hypertrophy and, if so, how it evolves during the transition from hypertrophy to HF; and (2) the role of junctophilin-2 in T-tubule remodeling. Methods and Results: We investigated T-tubule remodeling in relation to ventricular function during HF progression using state-of-the-art confocal imaging of T-tubules in intact hearts, using a thoracic aortic banding rat HF model. We developed a quantitative T-tubule power (TTpower) index to represent the integrity of T-tubule structure. We found that discrete local loss and global reorganization of the T-tubule system (leftward shift of TTpower histogram) started early in compensated hypertrophy in left ventricular (LV) myocytes, before LV dysfunction, as detected by echocardiography. With progression from compensated hypertrophy to early and late HF, T-tubule remodeling spread from the LV to the right ventricle, and TTpower histograms of both ventricles gradually shifted leftward. The mean LV TTpower showed a strong correlation with ejection fraction and heart weight to body weight ratio. Over the progression to HF, we observed a gradual reduction in the expression of a junctophilin protein (JP-2) implicated in the formation of T-tubule/sarcoplasmic reticulum junctions. Furthermore, we found that JP-2 knockdown by gene silencing reduced T-tubule structure integrity in cultured adult ventricular myocytes. Conclusions: T-tubule remodeling in response to thoracic aortic banding stress begins before echocardiographically detectable LV dysfunction and progresses over the development of overt structural heart disease. LV T-tubule remodeling is closely associated with the severity of cardiac hypertrophy and predicts LV function. Thus, T-tubule remodeling may constitute a key mechanism underlying the transition from compensated hypertrophy to HF.


Nature | 2012

CaMKII determines mitochondrial stress responses in heart

Mei Ling A Joiner; Olha M. Koval; Jingdong Li; B. Julie He; Chantal Allamargot; Zhan Gao; Elizabeth D. Luczak; Duane D. Hall; Brian D. Fink; Biyi Chen; Jinying Yang; Steven A. Moore; Thomas D. Scholz; Stefan Strack; Peter J. Mohler; William I. Sivitz; Long-Sheng Song; Mark E. Anderson

Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm). However, the signalling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU) are not known. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated in ischaemia reperfusion, myocardial infarction and neurohumoral injury, common causes of myocardial death and heart failure; these findings suggest that CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A, an mPTP antagonist with clinical efficacy in ischaemia reperfusion injury, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to ischaemia reperfusion injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition have reduced IMCU and are resistant to ischaemia reperfusion injury, myocardial infarction and neurohumoral injury, suggesting that pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry in myocardial cell death, and indicate that mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure in response to common experimental forms of pathophysiological stress.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease.

Solena Le Scouarnec; Naina Bhasin; Claude Vieyres; Thomas J. Hund; Shane R. Cunha; Olha M. Koval; Céline Marionneau; Biyi Chen; Yuejin Wu; Sophie Demolombe; Long-Sheng Song; Hervé Le Marec; Vincent Probst; Jean-Jacques Schott; Mark E. Anderson; Peter J. Mohler

The identification of nearly a dozen ion channel genes involved in the genesis of human atrial and ventricular arrhythmias has been critical for the diagnosis and treatment of fatal cardiovascular diseases. In contrast, very little is known about the genetic and molecular mechanisms underlying human sinus node dysfunction (SND). Here, we report a genetic and molecular mechanism for human SND. We mapped two families with highly penetrant and severe SND to the human ANK2 (ankyrin-B/AnkB) locus. Mice heterozygous for AnkB phenocopy human SND displayed severe bradycardia and rate variability. AnkB is essential for normal membrane organization of sinoatrial node cell channels and transporters, and AnkB is required for physiological cardiac pacing. Finally, dysfunction in AnkB-based trafficking pathways causes abnormal sinoatrial node (SAN) electrical activity and SND. Together, our findings associate abnormal channel targeting with human SND and highlight the critical role of local membrane organization for sinoatrial node excitability.


Circulation | 2013

Oxidized Ca 2+ /Calmodulin-Dependent Protein Kinase II Triggers Atrial Fibrillation

Anil Purohit; Adam G. Rokita; Xiaoqun Guan; Biyi Chen; Olha M. Koval; Niels Voigt; Stefan Neef; Thomas Sowa; Zhan Gao; Elizabeth D. Luczak; Hrafnhildur Stefansdottir; Andrew C. Behunin; Na Li; Ramzi N. El-Accaoui; Baoli Yang; Paari Dominic Swaminathan; Robert M. Weiss; Xander H.T. Wehrens; Long-Sheng Song; Dobromir Dobrev; Lars S. Maier; Mark E. Anderson

Background —Atrial fibrillation is a growing public health problem without adequate therapies. Angiotensin II (Ang II) and reactive oxygen species (ROS) are validated risk factors for atrial fibrillation (AF) in patients, but the molecular pathway(s) connecting ROS and AF is unknown. The Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a ROS activated proarrhythmic signal, so we hypothesized that oxidized CaMKIIδ(ox-CaMKII) could contribute to AF. Methods and Results —We found ox-CaMKII was increased in atria from AF patients compared to patients in sinus rhythm and from mice infused with Ang II compared with saline. Ang II treated mice had increased susceptibility to AF compared to saline treated WT mice, establishing Ang II as a risk factor for AF in mice. Knock in mice lacking critical oxidation sites in CaMKIIδ (MM-VV) and mice with myocardial-restricted transgenic over-expression of methionine sulfoxide reductase A (MsrA TG), an enzyme that reduces ox-CaMKII, were resistant to AF induction after Ang II infusion. Conclusions —Our studies suggest that CaMKII is a molecular signal that couples increased ROS with AF and that therapeutic strategies to decrease ox-CaMKII may prevent or reduce AF.Background— Atrial fibrillation (AF) is a growing public health problem without adequate therapies. Angiotensin II and reactive oxygen species are validated risk factors for AF in patients, but the molecular pathways connecting reactive oxygen species and AF are unknown. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a reactive oxygen species–activated proarrhythmic signal, so we hypothesized that oxidized CaMKII&dgr; could contribute to AF. Methods and Results— We found that oxidized CaMKII was increased in atria from AF patients compared with patients in sinus rhythm and from mice infused with angiotensin II compared with mice infused with saline. Angiotensin II–treated mice had increased susceptibility to AF compared with saline-treated wild-type mice, establishing angiotensin II as a risk factor for AF in mice. Knock-in mice lacking critical oxidation sites in CaMKII&dgr; (MM-VV) and mice with myocardium-restricted transgenic overexpression of methionine sulfoxide reductase A, an enzyme that reduces oxidized CaMKII, were resistant to AF induction after angiotensin II infusion. Conclusions— Our studies suggest that CaMKII is a molecular signal that couples increased reactive oxygen species with AF and that therapeutic strategies to decrease oxidized CaMKII may prevent or reduce AF.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Calmodulin kinase II is required for fight or flight sinoatrial node physiology

Yuejin Wu; Zhan Gao; Biyi Chen; Olha M. Koval; Madhu V. Singh; Xiaoqun Guan; Thomas J. Hund; William Kutschke; Satyam Sarma; Isabella M. Grumbach; Xander H.T. Wehrens; Peter J. Mohler; Long-Sheng Song; Mark E. Anderson

The best understood “fight or flight” mechanism for increasing heart rate (HR) involves activation of a cyclic nucleotide-gated ion channel (HCN4) by β-adrenergic receptor (βAR) agonist stimulation. HCN4 conducts an inward “pacemaker” current (If) that increases the sinoatrial nodal (SAN) cell membrane diastolic depolarization rate (DDR), leading to faster SAN action potential generation. Surprisingly, HCN4 knockout mice were recently shown to retain physiological HR increases with isoproterenol (ISO), suggesting that other If-independent pathways are critical to SAN fight or flight responses. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is a downstream signal in the βAR pathway that activates Ca2+ homeostatic proteins in ventricular myocardium. Mice with genetic, myocardial and SAN cell CaMKII inhibition have significantly slower HRs than controls during stress, leading us to hypothesize that CaMKII actions on SAN Ca2+ homeostasis are critical for βAR agonist responses in SAN. Here we show that CaMKII mediates ISO HR increases by targeting SAN cell Ca2+ homeostasis. CaMKII inhibition prevents ISO effects on SAN Ca2+ uptake and release from intracellular sarcoplasmic reticulum (SR) stores that are necessary for increasing DDR. CaMKII inhibition has no effect on the ISO response in SAN cells when SR Ca2+ release is disabled and CaMKII inhibition is only effective at slowing HRs during βAR stimulation. These studies show the tightly coupled, but previously unanticipated, relationship of CaMKII to the βAR pathway in fight or flight physiology and establish CaMKII as a critical signaling molecule for physiological HR responses to catecholamines.


Nature Medicine | 2014

The ryanodine receptor store-sensing gate controls Ca2+ waves and Ca2+-triggered arrhythmias

Wenqian Chen; Ruiwu Wang; Biyi Chen; Xiaowei Zhong; Huihui Kong; Yunlong Bai; Qiang Zhou; Cuihong Xie; Jingqun Zhang; Ang Guo; Xixi Tian; Peter P. Jones; Megan L. O'Mara; Yingjie Liu; Tao Mi; Lin Zhang; Jeff Bolstad; Lisa Semeniuk; Hongqiang Cheng; Jianlin Zhang; Ju Chen; D. Peter Tieleman; Anne M. Gillis; Henry J. Duff; Michael Fill; Long-Sheng Song; S. R. Wayne Chen

Spontaneous Ca2+ release from intracellular stores is important for various physiological and pathological processes. In cardiac muscle cells, spontaneous store overload–induced Ca2+ release (SOICR) can result in Ca2+ waves, a major cause of ventricular tachyarrhythmias (VTs) and sudden death. The molecular mechanism underlying SOICR has been a mystery for decades. Here we show that a point mutation, E4872A, in the helix bundle crossing region (the proposed gate) of the cardiac ryanodine receptor (RyR2) completely abolishes luminal, but not cytosolic, Ca2+ activation of RyR2. The introduction of metal-binding histidines at this site converts RyR2 into a luminal Ni2+-gated channel. Mouse hearts harboring a heterozygous RyR2 mutation at this site (E4872Q) are resistant to SOICR and are completely protected against Ca2+-triggered VTs. These data show that the RyR2 gate directly senses luminal (store) Ca2+, explaining the regulation of RyR2 by luminal Ca2+, the initiation of Ca2+ waves and Ca2+-triggered arrhythmias. This newly identified store-sensing gate structure is conserved in all RyR and inositol 1,4,5-trisphosphate receptor isoforms.


Circulation | 2013

Oxidized CaMKII Triggers Atrial Fibrillation

Anil Purohit; Adam G. Rokita; Xiaoqun Guan; Biyi Chen; Olha M. Koval; Niels Voigt; Stefan Neef; Thomas Sowa; Zhan Gao; Elizabeth D. Luczak; Hrafnhildur Stefansdottir; Andrew C. Behunin; Na Li; Ramzi El Accaoui; Baoli Yang; Paari Dominic Swaminathan; Robert M. Weiss; Xander H.T. Wehrens; Long-Sheng Song; Dobromir Dobrev; Lars S. Maier; Mark E. Anderson

Background —Atrial fibrillation is a growing public health problem without adequate therapies. Angiotensin II (Ang II) and reactive oxygen species (ROS) are validated risk factors for atrial fibrillation (AF) in patients, but the molecular pathway(s) connecting ROS and AF is unknown. The Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a ROS activated proarrhythmic signal, so we hypothesized that oxidized CaMKIIδ(ox-CaMKII) could contribute to AF. Methods and Results —We found ox-CaMKII was increased in atria from AF patients compared to patients in sinus rhythm and from mice infused with Ang II compared with saline. Ang II treated mice had increased susceptibility to AF compared to saline treated WT mice, establishing Ang II as a risk factor for AF in mice. Knock in mice lacking critical oxidation sites in CaMKIIδ (MM-VV) and mice with myocardial-restricted transgenic over-expression of methionine sulfoxide reductase A (MsrA TG), an enzyme that reduces ox-CaMKII, were resistant to AF induction after Ang II infusion. Conclusions —Our studies suggest that CaMKII is a molecular signal that couples increased ROS with AF and that therapeutic strategies to decrease ox-CaMKII may prevent or reduce AF.Background— Atrial fibrillation (AF) is a growing public health problem without adequate therapies. Angiotensin II and reactive oxygen species are validated risk factors for AF in patients, but the molecular pathways connecting reactive oxygen species and AF are unknown. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) has recently emerged as a reactive oxygen species–activated proarrhythmic signal, so we hypothesized that oxidized CaMKII&dgr; could contribute to AF. Methods and Results— We found that oxidized CaMKII was increased in atria from AF patients compared with patients in sinus rhythm and from mice infused with angiotensin II compared with mice infused with saline. Angiotensin II–treated mice had increased susceptibility to AF compared with saline-treated wild-type mice, establishing angiotensin II as a risk factor for AF in mice. Knock-in mice lacking critical oxidation sites in CaMKII&dgr; (MM-VV) and mice with myocardium-restricted transgenic overexpression of methionine sulfoxide reductase A, an enzyme that reduces oxidized CaMKII, were resistant to AF induction after angiotensin II infusion. Conclusions— Our studies suggest that CaMKII is a molecular signal that couples increased reactive oxygen species with AF and that therapeutic strategies to decrease oxidized CaMKII may prevent or reduce AF.


Proceedings of the National Academy of Sciences of the United States of America | 2010

CaV1.2 β-subunit coordinates CaMKII-triggered cardiomyocyte death and afterdepolarizations

Olha M. Koval; Xiaoquan Guan; Yuejin Wu; Mei Ling A Joiner; Zhan Gao; Biyi Chen; Isabella M. Grumbach; Elizabeth D. Luczak; Roger J. Colbran; Long-Sheng Song; Thomas J. Hund; Peter J. Mohler; Mark E. Anderson

Excessive activation of calmodulin kinase II (CaMKII) causes arrhythmias and heart failure, but the cellular mechanisms for CaMKII-targeted proteins causing disordered cell membrane excitability and myocardial dysfunction remain uncertain. Failing human cardiomyocytes exhibit increased CaMKII and voltage-gated Ca2+ channel (CaV1.2) activity, and enhanced expression of a specific CaV1.2 β-subunit protein isoform (β2a). We recently identified CaV1.2 β2a residues critical for CaMKII phosphorylation (Thr 498) and binding (Leu 493), suggesting the hypothesis that these amino acids are crucial for cardiomyopathic consequences of CaMKII signaling. Here we show WT β2a expression causes cellular Ca2+ overload, arrhythmia-triggering cell membrane potential oscillations called early afterdepolarizations (EADs), and premature death in paced adult rabbit ventricular myocytes. Prevention of intracellular Ca2+ release by ryanodine or global cellular CaMKII inhibition reduced EADs and improved cell survival to control levels in WT β2a-expressing ventricular myocytes. In contrast, expression of β2a T498A or L493A mutants mimicked the protective effects of ryanodine or global cellular CaMKII inhibition by reducing Ca2+ entry through CaV1.2 and inhibiting EADs. Furthermore, CaV1.2 currents recorded from cells overexpressing CaMKII phosphorylation- or binding-incompetent β2a subunits were incapable of entering a CaMKII-dependent high-activity gating mode (mode 2), indicating that β2a Thr 498 and Leu 493 are required for CaV1.2 activation by CaMKII in native cells. These data show that CaMKII binding and phosphorylation sites on β2a are concise but pivotal components of a molecular and biophysical and mechanism for EADs and impaired survival in adult cardiomyocytes.


Cardiovascular Research | 2013

Emerging mechanisms of T-tubule remodelling in heart failure

Ang Guo; Caimei Zhang; Sheng Wei; Biyi Chen; Long-Sheng Song

Cardiac excitation-contraction coupling occurs primarily at the sites of transverse (T)-tubule/sarcoplasmic reticulum junctions. The orderly T-tubule network guarantees the instantaneous excitation and synchronous activation of nearly all Ca(2+) release sites throughout the large ventricular myocyte. Because of the critical roles played by T-tubules and the array of channels and transporters localized to the T-tubule membrane network, T-tubule architecture has recently become an area of considerable research interest in the cardiovascular field. This review will focus on the current knowledge regarding normal T-tubule structure and function in the heart, T-tubule remodelling in the transition from compensated hypertrophy to heart failure, and the impact of T-tubule remodelling on myocyte Ca(2+) handling function. In the last section, we discuss the molecular mechanisms underlying T-tubule remodelling in heart disease.


Circulation | 2008

Proarrhythmic Defects in Timothy Syndrome Require Calmodulin Kinase II

William H. Thiel; Biyi Chen; Thomas J. Hund; Olha M. Koval; Anil Purohit; Long-Sheng Song; Peter J. Mohler; Mark E. Anderson

Background— Timothy syndrome (TS) is a disease of excessive cellular Ca2+ entry and life-threatening arrhythmias caused by a mutation in the primary cardiac L-type Ca2+ channel (CaV1.2). The TS mutation causes loss of normal voltage-dependent inactivation of CaV1.2 current (ICa). During cellular Ca2+ overload, the calmodulin-dependent protein kinase II (CaMKII) causes arrhythmias. We hypothesized that CaMKII is a part of the proarrhythmic mechanism in TS. Methods and Results— We developed an adult rat ventricular myocyte model of TS (G406R) by lentivirus-mediated transfer of wild-type and TS CaV1.2. The exogenous CaV1.2 contained a mutation (T1066Y) conferring dihydropyridine resistance, so we could silence endogenous CaV1.2 with nifedipine and maintain peak ICa at control levels in infected cells. TS CaV1.2–infected ventricular myocytes exhibited the signature voltage-dependent inactivation loss under Ca2+ buffering conditions, not permissive for CaMKII activation. In physiological Ca2+ solutions, TS CaV1.2–expressing ventricular myocytes exhibited increased CaMKII activity and a proarrhythmic phenotype that included action potential prolongation, increased ICa facilitation, and afterdepolarizations. Intracellular dialysis of a CaMKII inhibitory peptide, but not a control peptide, reversed increases in ICa facilitation, normalized the action potential, and prevented afterdepolarizations. We developed a revised mathematical model that accounts for CaMKII-dependent and CaMKII-independent effects of the TS mutation. Conclusion— In TS, the loss of voltage-dependent inactivation is an upstream initiating event for arrhythmia phenotypes that are ultimately dependent on CaMKII activation.

Collaboration


Dive into the Biyi Chen's collaboration.

Top Co-Authors

Avatar

Long-Sheng Song

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ang Guo

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Weiss

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

William Kutschke

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge