Bjarki Eldon
Museum für Naturkunde
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bjarki Eldon.
Genetics | 2005
Bjarki Eldon; John Wakeley
We report a complex set of scaling relationships between mutation and reproduction in a simple model of a population. These follow from a consideration of patterns of genetic diversity in a sample of DNA sequences. Five different possible limit processes, each with a different scaled mutation parameter, can be used to describe genetic diversity in a large population. Only one of these corresponds to the usual population genetic model, and the others make drastically different predictions about genetic diversity. The complexity arises because individuals can potentially have very many offspring. To the extent that this occurs in a given species, our results imply that inferences from genetic data made under the usual assumptions are likely to be wrong. Our results also uncover a fundamental difference between populations in which generations are overlapping and those in which generations are discrete. We choose one of the five limit processes that appears to be appropriate for some marine organisms and use a sample of genetic data from a population of Pacific oysters to infer the parameters of the model. The data suggest the presence of rare reproduction events in which ∼8% of the population is replaced by the offspring of a single individual.
Genetics | 2008
Bjarki Eldon; John Wakeley
Estimates of gene flow between subpopulations based on FST (or NST) are shown to be confounded by the reproduction parameters of a model of skewed offspring distribution. Genetic evidence of population subdivision can be observed even when gene flow is very high, if the offspring distribution is skewed. A skewed offspring distribution arises when individuals can have very many offspring with some probability. This leads to high probability of identity by descent within subpopulations and results in genetic heterogeneity between subpopulations even when Nm is very large. Thus, we consider a limiting model in which the rates of coalescence and migration can be much higher than for a Wright–Fisher population. We derive the densities of pairwise coalescence times and expressions for FST and other statistics under both the finite island model and a many-demes limit model. The results can explain the observed genetic heterogeneity among subpopulations of certain marine organisms despite substantial gene flow.
Genetics | 2015
Bjarki Eldon; Matthias Birkner; Jochen Blath; Fabian Freund
The ability of the site-frequency spectrum (SFS) to reflect the particularities of gene genealogies exhibiting multiple mergers of ancestral lines as opposed to those obtained in the presence of population growth is our focus. An excess of singletons is a well-known characteristic of both population growth and multiple mergers. Other aspects of the SFS, in particular, the weight of the right tail, are, however, affected in specific ways by the two model classes. Using an approximate likelihood method and minimum-distance statistics, our estimates of statistical power indicate that exponential and algebraic growth can indeed be distinguished from multiple-merger coalescents, even for moderate sample sizes, if the number of segregating sites is high enough. A normalized version of the SFS (nSFS) is also used as a summary statistic in an approximate Bayesian computation (ABC) approach. The results give further positive evidence as to the general eligibility of the SFS to distinguish between the different histories.
Genetics | 2008
Bjarki Eldon; John Wakeley
Correlations in coalescence times between two loci are derived under selectively neutral population models in which the offspring of an individual can number on the order of the population size. The correlations depend on the rates of recombination and random drift and are shown to be functions of the parameters controlling the size and frequency of these large reproduction events. Since a prediction of linkage disequilibrium can be written in terms of correlations in coalescence times, it follows that the prediction of linkage disequilibrium is a function not only of the rate of recombination but also of the reproduction parameters. Low linkage disequilibrium is predicted if the offspring of a single individual frequently replace almost the entire population. However, high linkage disequilibrium can be predicted if the offspring of a single individual replace an intermediate fraction of the population. In some cases the model reproduces the standard Wright–Fisher predictions. Contrary to common intuition, high linkage disequilibrium can be predicted despite frequent recombination, and low linkage disequilibrium under infrequent recombination. Simulations support the analytical results but show that the variance of linkage disequilibrium is very large.
Genetics | 2013
Matthias Birkner; Jochen Blath; Bjarki Eldon
Statistical properties of the site-frequency spectrum associated with Λ-coalescents are our objects of study. In particular, we derive recursions for the expected value, variance, and covariance of the spectrum, extending earlier results of Fu (1995) for the classical Kingman coalescent. Estimating coalescent parameters introduced by certain Λ-coalescents for data sets too large for full-likelihood methods is our focus. The recursions for the expected values we obtain can be used to find the parameter values that give the best fit to the observed frequency spectrum. The expected values are also used to approximate the probability a (derived) mutation arises on a branch subtending a given number of leaves (DNA sequences), allowing us to apply a pseudolikelihood inference to estimate coalescence parameters associated with certain subclasses of Λ-coalescents. The properties of the pseudolikelihood approach are investigated on simulated as well as real mtDNA data sets for the high-fecundity Atlantic cod (Gadus morhua). Our results for two subclasses of Λ-coalescents show that one can distinguish these subclasses from the Kingman coalescent, as well as between the Λ-subclasses, even for a moderate (maybe a few hundred) sample size.
Current Zoology | 2016
Bjarki Eldon; Florentine Riquet; Jon M. Yearsley; Didier Jollivet; Thomas Broquet
Chaotic genetic patchiness (CGP) refers to surprising patterns of spatial and temporal genetic structure observed in some marine species at a scale where genetic variation should be efficiently homogenized by gene flow via larval dispersal. Here we review and discuss 4 mechanisms that could generate such unexpected patterns: selection, sweepstakes reproductive success, collective dispersal, and temporal shifts in local population dynamics. First, we review examples where genetic differentiation at specific loci was driven by diversifying selection, which was historically the first process invoked to explain CGP. Second, we turn to neutral demographic processes that may drive genome-wide effects, and whose effects on CGP may be enhanced when they act together. We discuss how sweepstakes reproductive success accelerates genetic drift and can thus generate genetic structure, provided that gene flow is not too strong. Collective dispersal is another mechanism whereby genetic structure can be maintained regardless of dispersal intensity, because it may prevent larval cohorts from becoming entirely mixed. Theoretical analyses of both the sweepstakes and the collective dispersal ideas are presented. Finally, we discuss an idea that has received less attention than the other ones just mentioned, namely temporal shifts in local population dynamics.
Genetics | 2013
Matthias Birkner; Jochen Blath; Bjarki Eldon
A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can be large relative to the total population size. Similar “heavily skewed” reproduction mechanisms have been recently considered by various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Möhle (1998) is extended to obtain convergence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated. Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model. Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by simulations, hinting at how to distinguish between different population models.
BMC Bioinformatics | 2015
Sha Zhu; James H. Degnan; Sharyn J. Goldstien; Bjarki Eldon
BackgroundThere has been increasing interest in coalescent models which admit multiple mergers of ancestral lineages; and to model hybridization and coalescence simultaneously.ResultsHybrid-Lambda is a software package that simulates gene genealogies under multiple merger and Kingman’s coalescent processes within species networks or species trees. Hybrid-Lambda allows different coalescent processes to be specified for different populations, and allows for time to be converted between generations and coalescent units, by specifying a population size for each population. In addition, Hybrid-Lambda can generate simulated datasets, assuming the infinitely many sites mutation model, and compute the FST statistic. As an illustration, we apply Hybrid-Lambda to infer the time of subdivision of certain marine invertebrates under different coalescent processes.ConclusionsHybrid-Lambda makes it possible to investigate biogeographic concordance among high fecundity species exhibiting skewed offspring distribution.
Theoretical Population Biology | 2011
Bjarki Eldon
The ratio of singletons to the total number of segregating sites is used to estimate a reproduction parameter in a population model of large offspring numbers without having to jointly estimate the mutation rate. For neutral genetic variation, the ratio of singletons to the total number of segregating sites is equivalent to the ratio of total length of external branches to the total length of the gene genealogy. A multinomial maximum likelihood method that takes into account more frequency classes than just the singletons is developed to estimate the parameter of another large offspring number model. The performance of these methods with regard to sample size, mutation rate, and bias, is investigated by simulation. The expected value of the ratio of the total length of external branches to the total length of the whole tree is, using simulation, shown to decrease for the Kingman coalescent as sample size increases, but can increase or decrease, depending on parameter values, for Λ coalescents. Considering ratios of tree statistics, as opposed to considering lengths of various subtrees separately, can yield better insight into the dynamics of gene genealogies.
Theoretical Population Biology | 2009
Bjarki Eldon
Structured coalescent processes are derived for the finite island model under a migration mechanism that conserves the subpopulation sizes. The underlying population model is a modified Moran model in which the reproducing individual can have very many offspring with some probability. Convergence to a structured coalescent process results when assuming that migration follows a coalescent timescale which can be much shorter than the usual Wright-Fisher timescale. Three different limit processes are possible depending on the coalescent timescale, two of which allow multiple mergers of ancestral lines. The expected time to most recent common ancestor, and the expected total size of the genealogy, of balanced and unbalanced samples can be very similar, even when migration is low, if the coalescent process allows multiple mergers. The expected total size increases almost linearly with sample size in some cases. The results have implications for inference about genetic population structure.