Bjoern Traenkle
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bjoern Traenkle.
Biochimica et Biophysica Acta | 2014
Philipp D. Kaiser; Julia Maier; Bjoern Traenkle; Felix Emele; Ulrich Rothbauer
In biomedical research there is an ongoing demand for new technologies, which help to elucidate disease mechanisms and provide the basis to develop novel therapeutics. In this context a comprehensive understanding of cellular processes and their pathophysiology based on reliable information on abundance, localization, posttranslational modifications and dynamic interactions of cellular components is indispensable. Besides their significant impact as therapeutic molecules, antibodies are arguably the most powerful research tools to study endogenous proteins and other cellular components. However, for cellular diagnostics their use is restricted to endpoint assays using fixed and permeabilized cells. Alternatively, live cell imaging using fluorescent protein-tagged reporters is widely used to study protein localization and dynamics in living cells. However, only artificially introduced chimeric proteins are visualized, whereas the endogenous proteins, their posttranslational modifications as well as non-protein components of the cell remain invisible and cannot be analyzed. To overcome these limitations, traceable intracellular binding molecules provide new opportunities to perform cellular diagnostics in real time. In this review we summarize recent progress in the generation of intracellular and cell penetrating antibodies and their application to target and trace cellular components in living cells. We highlight recent advances in the structural formulation of recombinant antibody formats, reliable screening protocols and sophisticated cellular targeting technologies and propose that such intrabodies will become versatile research tools for real time cell-based diagnostics including target validation and live cell imaging. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Molecular & Cellular Proteomics | 2015
Bjoern Traenkle; Felix Emele; Roman Anton; Oliver Poetz; Ragna S. Haeussler; Julia Maier; Philipp D. Kaiser; Armin M. Scholz; Stefan Nueske; Andrea Buchfellner; Tina Romer; Ulrich Rothbauer
β-catenin is the key component of the canonical Wnt pathway and plays a crucial role in a multitude of developmental and homeostatic processes. The different tasks of β-catenin are orchestrated by its subcellular localization and participation in multiprotein complexes. To gain a better understanding of β-catenins role in living cells we have generated a new set of single domain antibodies, referred to as nanobodies, derived from heavy chain antibodies of camelids. We selected nanobodies recognizing the N-terminal, core or C-terminal domain of β-catenin and applied these new high-affinity binders as capture molecules in sandwich immunoassays and co-immunoprecipitations of endogenous β-catenin complexes. In addition, we engineered intracellularly functional anti-β-catenin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. For the first time, we were able to visualize the subcellular localization and nuclear translocation of endogenous β-catenin in living cells using these chromobodies. Moreover, the chromobody signal allowed us to trace the accumulation of diffusible, hypo-phosphorylated β-catenin in response to compound treatment in real time using High Content Imaging. The anti-β-catenin nanobodies and chromobodies characterized in this study are versatile tools that enable a novel and unique approach to monitor the dynamics of subcellular β-catenin in biochemical and cell biological assays.
Scientific Reports | 2015
Julia Maier; Bjoern Traenkle; Ulrich Rothbauer
Vimentin has become an important biomarker for epithelial-mesenchymal transition (EMT), a highly dynamic cellular process involved in the initiation of metastasis and cancer progression. To date there is no approach available to study endogenous vimentin in a physiological context. Here, we describe the selection and targeted modification of novel single-domain antibodies, so-called nanobodies, to trace vimentin in various cellular assays. Most importantly, we generated vimentin chromobodies by combining the binding moieties of the nanobodies with fluorescent proteins. Following chromobody fluorescence in a cancer-relevant cellular model, we were able for the first time to monitor and quantify dynamic changes of endogenous vimentin upon siRNA-mediated knockdown, induction with TGF-β and modification with Withaferin A by high-content imaging. This versatile approach allows detailed studies of the spatiotemporal organization of vimentin in living cells. It enables the identification of vimentin-modulating compounds, thereby providing the basis to screen for novel therapeutics affecting EMT.
Scientific Reports | 2016
Michael Braun; Bjoern Traenkle; Philipp A. Koch; Felix Emele; Frederik Weiss; Oliver Poetz; Thilo Stehle; Ulrich Rothbauer
Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies.
Frontiers in Immunology | 2017
Bjoern Traenkle; Ulrich Rothbauer
Single-domain antibodies (sdAbs) have substantially expanded the possibilities of advanced cellular imaging such as live-cell or super-resolution microscopy to visualize cellular antigens and their dynamics. In addition to their unique properties including small size, high stability, and solubility in many environments, sdAbs can be efficiently functionalized according to the needs of the respective imaging approach. Genetically encoded intrabodies fused to fluorescent proteins (chromobodies) have become versatile tools to study dynamics of endogenous proteins in living cells. Additionally, sdAbs conjugated to organic dyes were shown to label cellular structures with high density and minimal fluorophore displacement making them highly attractive probes for super-resolution microscopy. Here, we review recent advances of the chromobody technology to visualize localization and dynamics of cellular targets and the application of chromobody-based cell models for compound screening. Acknowledging the emerging importance of super-resolution microscopy in cell biology, we further discuss advantages and challenges of sdAbs for this technology.
Journal of Biomolecular Screening | 2016
Kenji Schorpp; Ina Rothenaigner; Julia Maier; Bjoern Traenkle; Ulrich Rothbauer; Kamyar Hadian
Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle–dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)–approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening.
Cancer Research | 2016
Julia Maier; Bjoern Traenkle; Ulrich Rothbauer
The epithelial-mesenchymal transition (EMT) is a complex cellular program involved in the progression of epithelial cancers to a metastatic stage. Along this process, epithelial traits are repressed in favor of a motile mesenchymal phenotype. A detailed characterization and monitoring of EMT-related processes is required for the design of screening strategies needed to develop novel antimetastatic therapies. Overexpression of the canonical EMT biomarker vimentin correlates with increased tumor growth and invasiveness, as well as with reduced patient survival across various epithelial cancers. Moreover, recent findings have demonstrated an active role of vimentin in regulating and reorganizing the cellular architecture toward a migratory and invasive phenotype. However, current studies suffer from a lack of appropriate methods to trace the induction and dynamics of vimentin in cell-based assays. Recently, we have reported a novel intrabody (chromobody)-based approach to study the spatiotemporal organization of endogenous vimentin upon induction of EMT by high-content imaging. In this review, we discuss the relevance of the chromobody technology with regard to the visualization of EMT-related processes in living systems. Cancer Res; 76(19); 5592-6. ©2016 AACR.
Nature Communications | 2018
David Virant; Bjoern Traenkle; Julia Maier; Philipp D. Kaiser; Mona Bodenhöfer; Christian Schmees; Ilijana Vojnovic; Borbála Pisak-Lukáts; Ulrike Endesfelder; Ulrich Rothbauer
Dense fluorophore labeling without compromising the biological target is crucial for genuine super-resolution microscopy. Here we introduce a broadly applicable labeling strategy for fixed and living cells utilizing a short peptide tag-specific nanobody (BC2-tag/bivBC2-Nb). BC2-tagging of ectopically introduced or endogenous proteins does not interfere with the examined structures and bivBC2-Nb staining results in a close-grained fluorophore labeling with minimal linkage errors. This allowed us to perform high-quality dSTORM imaging of various targets in mammalian and yeast cells. We expect that this versatile strategy will render many more demanding cellular targets amenable to dSTORM imaging.Nanobodies (Nbs) coupled to organic dyes are increasingly used for super-resolution cell imaging, but producing gene-specific Nbs is time-consuming. Here the authors present a peptide-tag/Nb combination for dSTORM imaging which can be easily adapted to different targets in fixed and live cells.
Molecular & Cellular Proteomics | 2018
Bettina-Maria Keller; Julia Maier; Kathy-Ann Secker; Stefanie-Maria Egetemaier; Yana Parfyonova; Ulrich Rothbauer; Bjoern Traenkle
Cancer Research | 2017
Julia Maier; Theresa Plaga; Stefanie Egetemaier; Bjoern Traenkle; Ulrich Rothbauer