Bjørn Altermark
University of Tromsø
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bjørn Altermark.
FEBS Journal | 2007
Bjørn Altermark; Laila Niiranen; Nils Peder Willassen; Arne O. Smalås; Elin Moe
Endonuclease I is a periplasmic or extracellular enzyme present in many different Proteobacteria. The endA gene encoding endonuclease I from the psychrophilic and mildly halophilic bacterium Vibrio salmonicida and from the mesophilic brackish water bacterium Vibrio cholerae have been cloned, over‐expressed in Escherichia coli, and purified. A comparison of the enzymatic properties shows large differences in NaCl requirements, optimum pH, temperature stability and catalytic efficiency of the two proteins. The V. salmonicida EndA shows typical cold‐adapted features such as lower unfolding temperature, lower temperature optimum for activity, and higher specific activity than V. cholerae EndA. The thermodynamic activation parameters confirm the psychrophilic nature of V. salmonicida EndA with a much lower activation enthalpy. The optimal conditions for enzymatic activity coincide well with the corresponding optimal requirements for growth of the organisms, and the enzymes function predominantly as DNases at physiological concentrations of NaCl. The periplasmic or extracellular localization of the enzymes, which renders them constantly exposed to the outer environment of the cell, may explain this fine‐tuning of biochemical properties.
Acta Crystallographica Section D-biological Crystallography | 2008
Bjørn Altermark; Ronny Helland; Elin Moe; Nils Peder Willassen; Arne O. Smalås
The crystal structure of the periplasmic/extracellular endonuclease I from Vibrio salmonicida has been solved to 1.5 A resolution and, in comparison to the corresponding endonucleases from V. cholerae and V. vulnificus, serves as a model system for the investigation of the structural determinants involved in the temperature and NaCl adaptation of this enzyme class. The overall fold of the three enzymes is essentially similar, but the V. salmonicida endonuclease displays a significantly more positive surface potential than the other two enzymes owing to the presence of ten more Lys residues. However, if the optimum salt concentrations for the V. salmonicida and V. cholerae enzymes are taken into consideration in the electrostatic surface-potential calculation, the potentials of the two enzymes become surprisingly similar. The higher number of basic residues in the V. salmonicida protein is therefore likely to be a result, at least in part, of adaptation to the more saline habitat of V. salmonicida (seawater) than V. cholerae (brackish water). The hydrophobic core of all three enzymes is almost identical, but the V. salmonicida endonuclease has a slightly lower number of internal hydrogen bonds. This, together with repulsive forces between the basic residues on the protein surface of V. salmonicida endonuclease I and differences in the distribution of salt bridges, probably results in higher flexibility of regions of the V. salmonicida protein. This is likely to influence both the catalytic activity and the stability of the protein.
Marine Genomics | 2015
T. Cerqueira; Diogo Pinho; Conceição Egas; Hugo Froufe; Bjørn Altermark; Carla Candeias; Ricardo S. Santos; Raul Bettencourt
Deep-sea hydrothermal sediments are known to support remarkably diverse microbial consortia. Cultureindependent sequence-based technologies have extensively been used to disclose the associated microbial diversity as most of the microorganisms inhabiting these ecosystems remain uncultured. Here we provide the first description of the microbial community diversity found on sediments from Menez Gwen vent system. We compared hydrothermally influenced sediments, retrieved from an active vent chimney at 812 m depth, with non-hydrothermally influenced sediments, from a 1400 m depth bathyal plain. Considering the enriched methane and sulfur composition of Menez Gwen vent fluids, and the sediment physicochemical properties in each sampled area, we hypothesized that the site-associated microbes would be different. To address this question, taxonomic profiles of bacterial, archaeal and micro-eukaryotic representatives were studied by rRNA gene tag pyrosequencing. Communities were shown to be significantly different and segregated by sediment geographical area. Specific mesophilic, thermophilic and hyperthermophilic archaeal (e.g., Archaeoglobus, ANME-1) and bacterial (e.g., Caldithrix, Thermodesulfobacteria) taxa were highly abundant near the vent chimney. In contrast, bathyal-associated members affiliated to more ubiquitous phylogroups from deep-ocean sediments (e.g., Thaumarchaeota MGI, Gamma- and Alphaproteobacteria). This study provides a broader picture of the biological diversity and microbial biogeography, and represents a preliminary approach to the microbial ecology associated with the deep-sea sediments from the Menez Gwen hydrothermal vent field.
FEBS Journal | 2008
Laila Niiranen; Bjørn Altermark; Bjørn Olav Brandsdal; Hanna-Kirsti S. Leiros; Ronny Helland; Arne O. Smalås; Nils Peder Willassen
Adaptation to extreme environments affects the stability and catalytic efficiency of enzymes, often endowing them with great industrial potential. We compared the environmental adaptation of the secreted endonuclease I from the cold‐adapted marine fish pathogen Vibrio salmonicida (VsEndA) and the human pathogen Vibrio cholerae (VcEndA). Kinetic analysis showed that VsEndA displayed unique halotolerance. It retained a considerable amount of activity from low concentrations to at least 0.6 m NaCl, and was adapted to work at higher salt concentrations than VcEndA by maintaining a low Km value and increasing kcat. In differential scanning calorimetry, salt stabilized both enzymes, but the effect on the calorimetric enthalpy and cooperativity of unfolding was larger for VsEndA, indicating salt dependence. Mutation of DNA binding site residues (VsEndA, Q69N and K71N; VcEndA, N69Q and N71K) affected the kinetic parameters. The VsEndA Q69N mutation also increased the Tm value, whereas other mutations affected mainly ΔHcal. The determined crystal structure of VcEndA N69Q revealed the loss of one hydrogen bond present in native VcEndA, but also the formation of a new hydrogen bond involving residue 69 that could possibly explain the similar Tm values for native and N69Q‐mutated VcEndA. Structural analysis suggested that the stability, catalytic efficiency and salt tolerance of EndA were controlled by small changes in the hydrogen bonding networks and surface electrostatic potential. Our results indicate that endonuclease I adaptation is closely coupled to the conditions of the habitats of natural Vibrio, with VsEndA displaying a remarkable salt tolerance unique amongst the endonucleases characterized so far.
Acta Crystallographica Section D-biological Crystallography | 2006
Bjørn Altermark; Arne O. Smalås; Nils Peder Willassen; Ronny Helland
The crystal structure of a periplasmic/extracellular endonuclease from Vibrio cholerae has been solved at low and at neutral pH. Crystals grown at pH 4.6 and 6.9 diffracted to 1.6 A (on BM01A at the ESRF) and 1.95 A (on a rotating-anode generator), respectively. The structures of the endonuclease were compared with the structure of a homologous enzyme in V. vulnificus. The structures of the V. cholerae enzyme at different pH values are essentially identical to each other and to the V. vulnificus enzyme. However, interesting features were observed in the solvent structures. Both V. cholerae structures reveal the presence of a chloride ion completely buried within the core of the protein, with the nearest solvent molecule approximately 7 A away. Magnesium, which is essential for catalysis, is present in the structure at neutral pH, but is absent at low pH, and may partly explain the inactivity of the enzyme at lower pH.
Marine Drugs | 2014
Mårten Strand; Marcus Carlsson; Hanna Uvell; Koushikul Islam; Karin Edlund; Inger Cullman; Bjørn Altermark; Ya-Fang Mei; Mikael Elofsson; Nils Peder Willassen; Göran Wadell; Fredrik Almqvist
Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.
Glycobiology | 2013
Man Kumari Gurung; Inger Lin Uttakleiv Ræder; Bjørn Altermark; Arne O. Smalås
Resolving the enzymatic pathways leading to sialic acids (Sias) in bacteria are vitally important for understanding their roles in pathogenesis and for subsequent development of tools to combat infections. A detailed characterization of the involved enzymes is also essential due to the highly applicable properties of Sias, i.e., as used in a wide range of medical applications and human nutrition. Bacterial strains that produce Sias display them mainly on their cell surface to mimic animal cells thereby evading the hosts immune system. Despite several studies, little is known about the virulence mechanisms of the fish pathogen Aliivibrio salmonicida. The genome of A. salmonicida LFI1238 contains a gene cluster homologous to the Escherichia coli neuraminic acid (Neu) gene cluster involved in biosynthesis of Sias found in the E. coli capsule. This cluster is probably responsible for the biosynthesis of Neu found in A. salmonicida. In this work, we have produced and characterized the sialic acid (Sia) synthase NeuB1, the key enzyme in the pathway. The Sia synthase is an enzyme producing N-acetylneuraminic acid by the condensation of N-acetylmannosamine and phosphoenolpyruvate. Genome content, kinetic data obtained, together with structural considerations, have led us to the prediction that the substrate for NeuB1 from A. salmonicida, E. coli and Streptococcus agalactiae among others, is 4-O-acetyl-N-acetylmannosamine. This means that the product of its enzymatic reaction is 7-O-acetyl-N-acetylneuraminic acid. We propose a pathway for production of this Sia in A. salmonicida, and present evidence for the presence of diacetylated Neu in the bacterium.
Journal of Basic Microbiology | 2016
Concetta De Santi; Bjørn Altermark; Donatella de Pascale; Nils Peder Willassen
We have investigated the biotechnological potential of Arctic marine bacteria for their ability to produce a broad spectrum of cold‐active enzymes. Marine bacteria exhibiting these features are of great interest for both fundamental research and industrial applications. Macrobiota, water and sediment samples have been collected during 2010 and 2011 expeditions around the Lofoten and Svalbard islands. Bacteria were isolated from this material and identified through 16S rRNA gene sequence analysis for the purpose of establishing a culture collection of marine Arctic bacteria. Herein, we present the functional screening for different extracellular enzymatic activities from 100 diversely chosen microbial isolates incubated at 4 and 20 °C. The production of esterase/lipase, DNase, and protease activities were revealed in 67, 53, and 56% of the strains, respectively, while 41, 23, 9, and 7% of the strains possessed amylase, chitinase, cellulase, and xylanase activities, respectively. Our findings show that phylogenetically diverse bacteria, including many new species, could be cultured from the marine arctic environment. The Arctic polar environment is still an untapped reservoir of biodiversity for bioprospecting.
Journal of Antimicrobial Chemotherapy | 2015
Anders Kristiansen; Miriam Grgic; Bjørn Altermark; Ingar Leiros
OBJECTIVES To characterize the chromosome-encoded metallo-β-lactamase (MBL) from the psychrophilic, marine fish-pathogenic bacterium Aliivibrio salmonicida LFI1238 and check for the presence of the gene in other Aliivibrio isolates both connected to the fish-farming industry and from the environment. METHODS The MBL gene was cloned and intracellularly expressed in Escherichia coli. Kinetic parameters, NaCl dependence, pH optimum and temperature optimum were determined using purified enzyme. The VIM-2 enzyme from a Pseudomonas aeruginosa hospital isolate was used as a counterpart in comparative analysis. PCRs with degenerate MBL primers were used to screen different A. salmonicida isolates for the presence of the gene. RESULTS A. salmonicida MBL (ALI-1) is an Ambler class B β-lactamase sharing 39% and 29% amino acid identity with IMP-1 and VIM-2, respectively. ALI-1 hydrolysed all β-lactam antibiotics tested, except for the monobactam aztreonam and the penicillin piperacillin. A profound increase in activity was observed when adding NaCl to the assay mixture (60% active without addition of NaCl, increasing to 100% at 0.5 M NaCl). The increase was less noticeable for VIM-2 (100% active at 0.2 M NaCl). ALI-1 appears to be ubiquitous in nature as it is found in Aliivibrio isolates not affected by human activity. CONCLUSIONS This work provides more data for the ever-expanding MBL group of enzymes. These periplasmic enzymes are activated by addition of NaCl, and the marine enzyme is highly salt tolerant and cold active. The observed enzyme properties very likely reflect the conditions that the enzymes face in situ.
Genome Announcements | 2013
Erik Hjerde; Marcin Miroslaw Pierechod; Adele Kim Williamson; Gro Elin Kjæreng Bjerga; Nils Peder Willassen; Arne O. Smalås; Bjørn Altermark
ABSTRACT The cold-adapted Rhodococcus sp. strain AW25M09 was isolated from an Atlantic hagfish caught off the shore of northern Norway as part of an ongoing bioprospecting project that aims to identify novel bacteria with biotechnological potential. Here, we present the 5.8-Mb draft genome sequence, together with details regarding the origin of the strain and its sequence assembly.