Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Canbäck is active.

Publication


Featured researches published by Björn Canbäck.


Nature | 2008

The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

Francis L. Martin; Andrea Aerts; Dag Ahrén; Annick Brun; E. G. J. Danchin; F. Duchaussoy; J. Gibon; Annegret Kohler; Erika Lindquist; V. Pereda; Asaf Salamov; Harris Shapiro; Jan Wuyts; D. Blaudez; M. Buée; P. Brokstein; Björn Canbäck; D. Cohen; P. E. Courty; P. M. Coutinho; Christine Delaruelle; John C. Detter; A. Deveau; Stephen P. DiFazio; Sébastien Duplessis; L. Fraissinet-Tachet; E. Lucic; P. Frey-Klett; C. Fourrey; Ivo Feussner

Mycorrhizal symbioses—the union of roots and soil fungi—are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains ∼20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Horizontal gene transfer: A critical view

Charles G. Kurland; Björn Canbäck; Otto Berg

It has been suggested that horizontal gene transfer (HGT) is the “essence of phylogeny.” In contrast, much data suggest that this is an exaggeration resulting in part from a reliance on inadequate methods to identify HGT events. In addition, the assumption that HGT is a ubiquitous influence throughout evolution is questionable. Instead, rampant global HGT is likely to have been relevant only to primitive genomes. In modern organisms we suggest that both the range and frequencies of HGT are constrained most often by selective barriers. As a consequence those HGT events that do occur most often have little influence on genome phylogeny. Although HGT does occur with important evolutionary consequences, classical Darwinian lineages seem to be the dominant mode of evolution for modern organisms.


Molecular Ecology | 2006

Global patterns of diversity and community structure in marine bacterioplankton

Thomas Pommier; Björn Canbäck; Lasse Riemann; Kjärstin H Boström; Karin Simu; Per Lundberg; Anders Tunlid; Åke Hagström

Because of their small size, great abundance and easy dispersal, it is often assumed that marine planktonic microorganisms have a ubiquitous distribution that prevents any structured assembly into local communities. To challenge this view, marine bacterioplankton communities from coastal waters at nine locations distributed world‐wide were examined through the use of comprehensive clone libraries of 16S ribosomal RNA genes, used as operational taxonomic units (OTU). Our survey and analyses show that there were marked differences in the composition and richness of OTUs between locations. Remarkably, the global marine bacterioplankton community showed a high degree of endemism, and conversely included few cosmopolitan OTUs. Our data were consistent with a latitudinal gradient of OTU richness. We observed a positive relationship between the relative OTU abundances and their range of occupation, i.e. cosmopolitans had the largest population sizes. Although OTU richness differed among locations, the distributions of the major taxonomic groups represented in the communities were analogous, and all local communities were similarly structured and dominated by a few OTUs showing variable taxonomic affiliations. The observed patterns of OTU richness indicate that similar evolutionary and ecological processes structured the communities. We conclude that marine bacterioplankton share many of the biogeographical and macroecological features of macroscopic organisms. The general processes behind those patterns are likely to be comparable across taxa and major global biomes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus)

Jason E. Stajich; Sarah K. Wilke; Dag Ahrén; Chun Hang Au; Bruce W. Birren; Mark Borodovsky; Claire Burns; Björn Canbäck; Lorna A. Casselton; Chi Keung Cheng; Jixin Deng; Fred S. Dietrich; David C. Fargo; Mark L. Farman; Allen C. Gathman; Jonathan M. Goldberg; Roderic Guigó; Patrick J. Hoegger; James Hooker; Ashleigh Huggins; Timothy Y. James; Takashi Kamada; Sreedhar Kilaru; Chinnapa Kodira; Ursula Kües; Doris M. Kupfer; Hoi Shan Kwan; Alexandre Lomsadze; Weixi Li; Walt W. Lilly

The mushroom Coprinopsis cinerea is a classic experimental model for multicellular development in fungi because it grows on defined media, completes its life cycle in 2 weeks, produces some 108 synchronized meiocytes, and can be manipulated at all stages in development by mutation and transformation. The 37-megabase genome of C. cinerea was sequenced and assembled into 13 chromosomes. Meiotic recombination rates vary greatly along the chromosomes, and retrotransposons are absent in large regions of the genome with low levels of meiotic recombination. Single-copy genes with identifiable orthologs in other basidiomycetes are predominant in low-recombination regions of the chromosome. In contrast, paralogous multicopy genes are found in the highly recombining regions, including a large family of protein kinases (FunK1) unique to multicellular fungi. Analyses of P450 and hydrophobin gene families confirmed that local gene duplications drive the expansions of paralogous copies and the expansions occur in independent lineages of Agaricomycotina fungi. Gene-expression patterns from microarrays were used to dissect the transcriptional program of dikaryon formation (mating). Several members of the FunK1 kinase family are differentially regulated during sexual morphogenesis, and coordinate regulation of adjacent duplications is rare. The genomes of C. cinerea and Laccaria bicolor, a symbiotic basidiomycete, share extensive regions of synteny. The largest syntenic blocks occur in regions with low meiotic recombination rates, no transposable elements, and tight gene spacing, where orthologous single-copy genes are overrepresented. The chromosome assembly of C. cinerea is an essential resource in understanding the evolution of multicellularity in the fungi.


Yeast | 2000

The Dual Origin of the Yeast Mitochondrial Proteome

Olof Karlberg; Björn Canbäck; Charles G. Kurland; Siv G. E. Andersson

We propose a scheme for the origin of mitochondria based on phylogenetic reconstructions with more than 400 yeast nuclear genes that encode mitochondrial proteins. Half of the yeast mitochondrial proteins have no discernable bacterial homologues, while one‐tenth are unequivocally of α‐proteobacterial origin. These data suggest that the majority of genes encoding yeast mitochondrial proteins are descendants of two different genomic lineages that have evolved in different modes. First, the ancestral free‐living α‐proteobacterium evolved into an endosymbiont of an anaerobic host. Most of the ancestral bacterial genes were lost, but a small fraction of genes supporting bioenergetic and translational processes were retained and eventually transferred to what became the host nuclear genome. In a second, parallel mode, a larger number of novel mitochondrial genes were recruited from the nuclear genome to complement the remaining genes from the bacterial ancestor. These eukaryotic genes, which are primarily involved in transport and regulatory functions, transformed the endosymbiont into an ATP‐exporting organelle. Copyright


Proceedings of the National Academy of Sciences of the United States of America | 2002

The global phylogeny of glycolytic enzymes

Björn Canbäck; Siv G. E. Andersson; Charles G. Kurland

Genes encoding the glycolytic enzymes of the facultative endocellular parasite Bartonella henselae have been analyzed phylogenetically within a very large cohort of homologues from bacteria and eukaryotes. We focus on this relative of Rickettsia prowazekii along with homologues from other α-proteobacteria to determine whether there have been systematic transfers of glycolytic genes from the presumed α-proteobacterial ancestor of the mitochondrion to the nucleus of the early eukaryote. The α-proteobacterial homologues representing the eight glycolytic enzymes studied here tend to cluster in well-supported nodes. Nevertheless, not one of these α-proteobacterial enzymes is related as a sister clade to the corresponding eukaryotic homologues. Nor is there a close phylogenetic relationship between glycolytic genes from Eucarya and any other bacterial phylum. In contrast, several of the reconstructions suggest that there may have been systematic transfer of sequences encoding glycolytic enzymes from cyanobacteria to some green plants. Otherwise, surprisingly little exchange between the bacterial and eukaryotic domains is observed. The descent of eukaryotic genes encoding enzymes of intermediary metabolism is reevaluated.


Environmental Microbiology | 2012

The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry.

Francois Rineau; Doris Roth; Firoz Shah; Mark M. Smits; Tomas Johansson; Björn Canbäck; Peter Bjarke Olsen; Per Persson; Morten Nedergaard Grell; Erika Lindquist; Igor V. Grigoriev; Lene Lange; Anders Tunlid

Soils in boreal forests contain large stocks of carbon. Plants are the main source of this carbon through tissue residues and root exudates. A major part of the exudates are allocated to symbiotic ectomycorrhizal fungi. In return, the plant receives nutrients, in particular nitrogen from the mycorrhizal fungi. To capture the nitrogen, the fungi must at least partly disrupt the recalcitrant organic matter–protein complexes within which the nitrogen is embedded. This disruption process is poorly characterized. We used spectroscopic analyses and transcriptome profiling to examine the mechanism by which the ectomycorrhizal fungus Paxillus involutus degrades organic matter when acquiring nitrogen from plant litter. The fungus partially degraded polysaccharides and modified the structure of polyphenols. The observed chemical changes were consistent with a hydroxyl radical attack, involving Fenton chemistry similar to that of brown-rot fungi. The set of enzymes expressed by Pa. involutus during the degradation of the organic matter was similar to the set of enzymes involved in the oxidative degradation of wood by brown-rot fungi. However, Pa. involutus lacked transcripts encoding extracellular enzymes needed for metabolizing the released carbon. The saprotrophic activity has been reduced to a radical-based biodegradation system that can efficiently disrupt the organic matter–protein complexes and thereby mobilize the entrapped nutrients. We suggest that the released carbon then becomes available for further degradation and assimilation by commensal microbes, and that these activities have been lost in ectomycorrhizal fungi as an adaptation to symbiotic growth on host photosynthate. The interdependence of ectomycorrhizal symbionts and saprophytic microbes would provide a key link in the turnover of nutrients and carbon in forest ecosystems.


Evolution | 2012

LARGE-SCALE CANDIDATE GENE SCAN REVEALS THE ROLE OF CHEMORECEPTOR GENES IN HOST PLANT SPECIALIZATION AND SPECIATION IN THE PEA APHID

Carole M. Smadja; Björn Canbäck; Renaud Vitalis; Mathieu Gautier; Julia Ferrari; Jing-Jiang Zhou; Roger K. Butlin

Understanding the drivers of speciation is critical to interpreting patterns of biodiversity. The identification of the genetic changes underlying adaptation and reproductive isolation is necessary to link barriers to gene flow to the causal origins of divergence. Here, we present a novel approach to the genetics of speciation, which should complement the commonly used approaches of quantitative trait locus mapping and genome‐wide scans for selection. We present a large‐scale candidate gene approach by means of sequence capture, applied to identifying the genetic changes underlying reproductive isolation in the pea aphid, a model system for the study of ecological speciation. Targeted resequencing enabled us to scale up the candidate gene approach, specifically testing for the role of chemosensory gene families in host plant specialization. Screening for the signature of divergence under selection at 172 candidate and noncandidate loci, we revealed a handful of loci that show high levels of differentiation among host races, which almost all correspond to odorant and gustatory receptor genes. This study offers the first indication that some chemoreceptor genes, often tightly linked together in the genome, could play a key role in local adaptation and reproductive isolation in the pea aphid and potentially other phytophagous insects. Our approach opens a new route toward the functional genomics of ecological speciation.


New Phytologist | 2016

Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors

Firoz Shah; César Nicolás; Johan Bentzer; Magnus Ellström; Mark M. Smits; Francois Rineau; Björn Canbäck; Dimitrios Floudas; Robert Carleer; Gerald Lackner; Jana Braesel; Dirk Hoffmeister; Bernard Henrissat; Dag Ahrén; Tomas Johansson; David S. Hibbett; Francis Martin; Per Persson; Anders Tunlid

Summary Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose‐degrading enzymes that are present in their saprotrophic ancestors. Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils. In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition ‘toolbox’ has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families. The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead.


Applied and Environmental Microbiology | 2012

Recruitment of Members from the Rare Biosphere of Marine Bacterioplankton Communities after an Environmental Disturbance

Johanna Sjöstedt; Per Koch-Schmidt; Mikael Pontarp; Björn Canbäck; Anders Tunlid; Per Lundberg; Åke Hagström; Lasse Riemann

ABSTRACT A bacterial community may be resistant to environmental disturbances if some of its species show metabolic flexibility and physiological tolerance to the changing conditions. Alternatively, disturbances can change the composition of the community and thereby potentially affect ecosystem processes. The impact of disturbance on the composition of bacterioplankton communities was examined in continuous seawater cultures. Bacterial assemblages from geographically closely connected areas, the Baltic Sea (salinity 7 and high dissolved organic carbon [DOC]) and Skagerrak (salinity 28 and low DOC), were exposed to gradual opposing changes in salinity and DOC over a 3-week period such that the Baltic community was exposed to Skagerrak salinity and DOC and vice versa. Denaturing gradient gel electrophoresis and clone libraries of PCR-amplified 16S rRNA genes showed that the composition of the transplanted communities differed significantly from those held at constant salinity. Despite this, the growth yields (number of cells ml−1) were similar, which suggests similar levels of substrate utilization. Deep 454 pyrosequencing of 16S rRNA genes showed that the composition of the disturbed communities had changed due to the recruitment of phylotypes present in the rare biosphere of the original community. The study shows that members of the rare biosphere can become abundant in a bacterioplankton community after disturbance and that those bacteria can have important roles in maintaining ecosystem processes.

Collaboration


Dive into the Björn Canbäck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge