Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Corzilius is active.

Publication


Featured researches published by Björn Corzilius.


Journal of the American Chemical Society | 2012

Dynamic Nuclear Polarization with a Water-soluble Rigid Biradical

Matthew K. Kiesewetter; Björn Corzilius; Albert A. Smith; Robert G. Griffin; Timothy M. Swager

A new biradical polarizing agent, bTbtk-py, for dynamic nuclear polarization (DNP) experiments in aqueous media is reported. The synthesis is discussed in light of the requirements of the optimum, theoretical, biradical system. To date, the DNP NMR signal enhancement resulting from bTbtk-py is the largest of any biradical in the ideal glycerol/water solvent matrix, ε = 230. EPR and X-ray crystallography are used to characterize the molecule and suggest approaches for further optimizing the biradical distance and relative orientation.


Physical Chemistry Chemical Physics | 2010

Resolution and Polarization Distribution in Cryogenic DNP/MAS Experiments

Alexander B. Barnes; Björn Corzilius; Melody L. Mak-Jurkauskas; Loren B. Andreas; Vikram S. Bajaj; Yoh Matsuki; Marina Belenky; Johan Lugtenburg; Jagadishwar R. Sirigiri; Richard J. Temkin; Judith Herzfeld; Robert G. Griffin

This contribution addresses four potential misconceptions associated with high-resolution dynamic nuclear polarization/magic angle spinning (DNP/MAS) experiments. First, spectral resolution is not generally compromised at the cryogenic temperatures at which DNP experiments are performed. As we demonstrate at a modest field of 9 T (380 MHz (1)H), 1 ppm linewidths are observed in DNP/MAS spectra of a membrane protein in its native lipid bilayer, and <0.4 ppm linewidths are reported in a crystalline peptide at 85 K. Second, we address the concerns about paramagnetic broadening in DNP/MAS spectra of proteins by demonstrating that the exogenous radical polarizing agents utilized for DNP are distributed in the sample in such a manner as to avoid paramagnetic broadening and thus maintain full spectral resolution. Third, the enhanced polarization is not localized around the polarizing agent, but rather is effectively and uniformly dispersed throughout the sample, even in the case of membrane proteins. Fourth, the distribution of polarization from the electron spins mediated via spin diffusion between (1)H-(1)H strongly dipolar coupled spins is so rapid that shorter magnetization recovery periods between signal averaging transients can be utilized in DNP/MAS experiments than in typical experiments performed at ambient temperature.


Journal of Chemical Physics | 2012

Solid effect dynamic nuclear polarization and polarization pathways.

Albert A. Smith; Björn Corzilius; Alexander B. Barnes; Thorsten Maly; Robert G. Griffin

Using dynamic nuclear polarization (DNP)/nuclear magnetic resonance instrumentation that utilizes a microwave cavity and a balanced rf circuit, we observe a solid effect DNP enhancement of 94 at 5 T and 80 K using trityl radical as the polarizing agent. Because the buildup rate of the solid effect increases with microwave field strength, we obtain a sensitivity gain of 128. The data suggest that higher microwave field strengths would lead to further improvements in sensitivity. In addition, the observation of microwave field dependent enhancements permits us to draw conclusions about the path that polarization takes during the DNP process. By measuring the time constant for the polarization buildup and enhancement as a function of the microwave field strength, we are able to compare models of polarization transfer, and show that the major contribution to the bulk polarization arises via direct transfer from electrons, rather than transferring first to nearby nuclei and then transferring to bulk nuclei in a slow diffusion step. In addition, the model predicts that nuclei near the electron receive polarization that can relax, decrease the electron polarization, and attenuate the DNP enhancement. The magnitude of this effect depends on the number of near nuclei participating in the polarization transfer, hence the size of the diffusion barrier, their T(1), and the transfer rate. Approaches to optimizing the DNP enhancement are discussed.


Journal of Organic Chemistry | 2012

Rigid Orthogonal bis-TEMPO Biradicals with Improved Solubility for Dynamic Nuclear Polarization

Eric L. Dane; Björn Corzilius; Egon Rizzato; Pierre Stocker; Thorsten Maly; Albert A. Smith; Robert G. Griffin; Olivier Ouari; Paul Tordo; Timothy M. Swager

The synthesis and characterization of oxidized bis-thioketal-trispiro dinitroxide biradicals that orient the nitroxides in a rigid, approximately orthogonal geometry are reported. The biradicals show better performance as polarizing agents in dynamic nuclear polarization (DNP) NMR experiments as compared to biradicals lacking the constrained geometry. In addition, the biradicals display improved solubility in aqueous media due to the presence of polar sulfoxides. The results suggest that the orientation of the radicals is not dramatically affected by the oxidation state of the sulfur atoms in the biradical, and we conclude that a biradical polarizing agent containing a mixture of oxidation states can be used for improved solubility without a loss in performance.


Journal of Physical Chemistry B | 2013

Solvent-Free Dynamic Nuclear Polarization of Amorphous and Crystalline ortho-Terphenyl

Ta-Chung Ong; Melody L. Mak-Jurkauskas; Joseph J. Walish; Vladimir K. Michaelis; Björn Corzilius; Albert A. Smith; Andrew M. Clausen; Janet C. Cheetham; Timothy M. Swager; Robert G. Griffin

Dynamic nuclear polarization (DNP) of amorphous and crystalline ortho-terphenyl (OTP) in the absence of glass forming agents is presented in order to gauge the feasibility of applying DNP to pharmaceutical solid-state nuclear magnetic resonance experiments and to study the effect of intermolecular structure, or lack thereof, on the DNP enhancement. By way of (1)H-(13)C cross-polarization, we obtained a DNP enhancement (ε) of 58 for 95% deuterated OTP in the amorphous state using the biradical bis-TEMPO terephthalate (bTtereph) and ε of 36 in the crystalline state. Measurements of the (1)H T1 and electron paramagnetic resonance experiments showed the crystallization process led to phase separation of the polarization agent, creating an inhomogeneous distribution of radicals within the sample. Consequently, the effective radical concentration was decreased in the bulk OTP phase, and long-range (1)H-(1)H spin diffusion was the main polarization propagation mechanism. Preliminary DNP experiments with the glass-forming anti-inflammation drug, indomethacin, showed promising results, and further studies are underway to prepare DNP samples using pharmaceutical techniques.


Journal of Magnetic Resonance | 2014

Paramagnet induced signal quenching in MAS-DNP experiments in frozen homogeneous solutions.

Björn Corzilius; Loren B. Andreas; Albert A. Smith; Qing Zhe Ni; Robert G. Griffin

The effects of nuclear signal quenching induced by the presence of a paramagnetic polarizing agent are documented for conditions used in magic angle spinning (MAS)-dynamic nuclear polarization (DNP) experiments on homogeneous solutions. In particular, we present a detailed analysis of three time constants: (1) the longitudinal build-up time constant TB for (1)H; (2) the rotating frame relaxation time constant T1ρ for (1)H and (13)C and (3) T2 of (13)C, the transverse relaxation time constant in the laboratory frame. These relaxation times were measured during microwave irradiation at a magnetic field of 5 T (140 GHz) as a function of the concentration of four polarizing agents: TOTAPOL, 4-amino-TEMPO, trityl (OX063), and Gd-DOTA and are compared to those obtained for a sample lacking paramagnetic doping. We also report the EPR relaxation time constants T1S and T2S, the DNP enhancements, ε, and the parameter E, defined below, which measures the sensitivity enhancement for the four polarizing agents as a function of the electron concentration. We observe substantial intensity losses (paramagnetic quenching) with all of the polarizing agents due to broadening mechanisms and cross relaxation during MAS. In particular, the monoradical trityl and biradical TOTAPOL induce ∼40% and 50% loss of signal intensity. In contrast there is little suppression of signal intensity in static samples containing these paramagnetic species. Despite the losses due to quenching, we find that all of the polarizing agents provide substantial gains in signal intensity with DNP, and in particular that the net enhancement is optimal for biradicals that operate with the cross effect. We discuss the possibility that much of this polarization loss can be regained with the development of instrumentation and methods to perform electron decoupling.


Journal of the American Chemical Society | 2011

Equilibration of tyrosyl radicals (Y356•, Y731•, Y730•) in the radical propagation pathway of the Escherichia coli class Ia ribonucleotide reductase.

Kenichi Yokoyama; Albert A. Smith; Björn Corzilius; Robert G. Griffin; JoAnne Stubbe

Escherichia coli ribonucleotide reductase is an α2β2 complex that catalyzes the conversion of nucleotides to deoxynucleotides using a diferric tyrosyl radical (Y(122)(•)) cofactor in β2 to initiate catalysis in α2. Each turnover requires reversible long-range proton-coupled electron transfer (PCET) over 35 Å between the two subunits by a specific pathway (Y(122)(•) ⇆ [W(48)?] ⇆ Y(356) within β to Y(731) ⇆ Y(730) ⇆ C(439) within α). Previously, we reported that a β2 mutant with 3-nitrotyrosyl radical (NO(2)Y(•); 1.2 radicals/β2) in place of Y(122)(•) in the presence of α2, CDP, and ATP catalyzes formation of 0.6 equiv of dCDP and accumulates 0.6 equiv of a new Y(•) proposed to be located on Y(356) in β2. We now report three independent methods that establish that Y(356) is the predominant location (85-90%) of the radical, with the remaining 10-15% delocalized onto Y(731) and Y(730) in α2. Pulsed electron-electron double-resonance spectroscopy on samples prepared by rapid freeze quench (RFQ) methods identified three distances: 30 ± 0.4 Å (88% ± 3%) and 33 ± 0.4 and 38 ± 0.5 Å (12% ± 3%) indicative of NO(2)Y(122)(•)-Y(356)(•), NO(2)Y(122)(•)-NO(2)Y(122)(•), and NO(2)Y(122)(•)-Y(731(730))(•), respectively. Radical distribution in α2 was supported by RFQ electron paramagnetic resonance (EPR) studies using Y(731)(3,5-F(2)Y) or Y(730)(3,5-F(2)Y)-α2, which revealed F(2)Y(•), studies using globally incorporated [β-(2)H(2)]Y-α2, and analysis using parameters obtained from 140 GHz EPR spectroscopy. The amount of Y(•) delocalized in α2 from these two studies varied from 6% to 15%. The studies together give the first insight into the relative redox potentials of the three transient Y(•) radicals in the PCET pathway and their conformations.


Journal of the American Chemical Society | 2012

Water-Soluble Narrow-Line Radicals for Dynamic Nuclear Polarization

Olesya Haze; Björn Corzilius; Albert A. Smith; Robert G. Griffin; Timothy M. Swager

The synthesis of air-stable, highly water-soluble organic radicals containing a 1,3-bis(diphenylene)-2-phenylallyl (BDPA) core is reported. A sulfonated derivative, SA-BDPA, retains the narrow electron paramagnetic resonance linewidth (<30 MHz at 5 T) of the parent BDPA in highly concentrated glycerol/water solutions (40 mM), which enables its use as polarizing agent for solid effect dynamic nuclear polarization (SE DNP). A sensitivity enhancement of 110 was obtained in high-field magic-angle-spinning (MAS) NMR experiments. The ease of synthesis and high maximum enhancements obtained with the BDPA-based radicals constitute a major advance over the trityl-type narrow-line polarization agents.


Journal of Chemical Physics | 2012

Solid effect in magic angle spinning dynamic nuclear polarization.

Björn Corzilius; Albert A. Smith; Robert G. Griffin

For over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω(0)(-2) field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ε = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of (1)H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear (1)H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.


Journal of Magnetic Resonance | 2011

Microwave Field Distribution in a Magic Angle Spinning Dynamic Nuclear Polarization NMR Probe

Emilio A. Nanni; Alexander B. Barnes; Yoh Matsuki; Paul P. Woskov; Björn Corzilius; Robert G. Griffin; Richard J. Temkin

We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment.

Collaboration


Dive into the Björn Corzilius's collaboration.

Top Co-Authors

Avatar

Robert G. Griffin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Albert A. Smith

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander B. Barnes

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Timothy M. Swager

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monu Kaushik

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Richard J. Temkin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge