Bjørn Dahle
Norwegian University of Life Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bjørn Dahle.
Journal of Apicultural Research | 2012
Romée van der Zee; Lennard Pisa; Sreten Andonov; Robert Brodschneider; Róbert Chlebo; Mary F Coffey; Karl Crailsheim; Bjørn Dahle; Anna Gajda; Marica M Drazic; Mariano Higes; Lassi Kauko; Aykut Kence; Meral Kence; Hrisula Kiprijanovska; Jasna Kralj; Preben Kristiansen; Raquel Martin Hernandez; Franco Mutinelli; Bach Kim Nguyen; Christoph Otten; Stephen F. Pernal; Gavin Ramsay; Violeta Santrac; Victoria Soroker; Flemming Vejsnæs; Shi Wei; Selwyn Wilkins; A. Hlinku; Camino de San Martín
Summary In 2008 the COLOSS network was formed by honey bee experts from Europe and the USA. The primary objectives set by this scientific network were to explain and to prevent large scale losses of honey bee (Apis mellifera) colonies. In June 2008 COLOSS obtained four years support from the European Union from COST and was designated as COST Action FA0803—COLOSS (Prevention of honey bee Colony Losses). To enable the comparison of loss data between participating countries, a standardized COLOSS questionnaire was developed. Using this questionnaire information on honey bee losses has been collected over two years. Survey data presented in this study were gathered in 2009 from 12 countries and in 2010 from 24 countries. Mean honey bee losses in Europe varied widely, between 7–22% over the 2008–9 winter and between 7–30% over the 2009–10 winter. An important finding is that for all countries which participated in 2008–9, winter losses in 2009–10 were found to be substantially higher. In 2009–10, winter losses in South East Europe were at such a low level that the factors causing the losses in other parts of Europe were absent, or at a level which did not affect colony survival. The five provinces of China, which were included in 2009–10, showed very low mean (4%) A. mellifera winter losses. In six Canadian provinces, mean winter losses in 2010 varied between 16–25%, losses in Nova Scotia (40%) being exceptionally high. In most countries and in both monitoring years, hobbyist beekeepers (1–50 colonies) experienced higher losses than practitioners with intermediate beekeeping operations (51–500 colonies). This relationship between scale of beekeeping and extent of losses effect was also observed in 2009–10, but was less pronounced. In Belgium, Italy, the Netherlands and Poland, 2008–9 mean winter losses for beekeepers who reported ‘disappeared’ colonies were significantly higher compared to mean winter losses of beekeepers who did not report ‘disappeared’ colonies. Mean 2008–9 winter losses for those beekeepers in the Netherlands who reported symptoms similar to “Colony Collapse Disorder” (CCD), namely: 1. no dead bees in or surrounding the hive while; 2. capped brood was present, were significantly higher than mean winter losses for those beekeepers who reported ‘disappeared’ colonies without the presence of capped brood in the empty hives. In the winter of 2009–10 in the majority of participating countries, beekeepers who reported ‘disappeared’ colonies experienced higher winter losses compared with beekeepers, who experienced winter losses but did not report ‘disappeared’ colonies.
Nature Genetics | 2014
Andreas Wallberg; Fan Han; Gustaf Wellhagen; Bjørn Dahle; Masakado Kawata; Nizar Haddad; Zilá Luz Paulino Simões; Mike H. Allsopp; Irfan Kandemir; Pilar De la Rúa; Christian Walter Werner Pirk; Matthew T. Webster
The honeybee Apis mellifera has major ecological and economic importance. We analyze patterns of genetic variation at 8.3 million SNPs, identified by sequencing 140 honeybee genomes from a worldwide sample of 14 populations at a combined total depth of 634×. These data provide insight into the evolutionary history and genetic basis of local adaptation in this species. We find evidence that population sizes have fluctuated greatly, mirroring historical fluctuations in climate, although contemporary populations have high genetic diversity, indicating the absence of domestication bottlenecks. Levels of genetic variation are strongly shaped by natural selection and are highly correlated with patterns of gene expression and DNA methylation. We identify genomic signatures of local adaptation, which are enriched in genes expressed in workers and in immune system– and sperm motility–related genes that might underlie geographic variation in reproduction, dispersal and disease resistance. This study provides a framework for future investigations into responses to pathogens and climate change in honeybees.
Journal of Mammalogy | 2006
Andreas Zedrosser; Bjørn Dahle; Jon E. Swenson
Abstract We investigated growth and determinants of adult female body size in brown bears (Ursus arctos) in 2 study areas in Sweden. Scandinavian female brown bears reached 90% of their asymptotic size at 4.1–4.7 years. Four factors were considered in our analysis of the determinants of adult female size: annual food conditions, population density, multilocus heterozygosity, and yearling body size. Our results suggest that individual body size variation of female brown bears is negatively related to density-dependent factors and positively correlated to density-independent fluctuations in the environment. Density-dependent factors may operate by increasing competition for food, resulting in a decrease in body size. Food resources for brown bears in Sweden fluctuate annually in the boreal forest and influence individual body size. Multilocus heterozygosity and yearling body size were not important in explaining adult size, because initially smaller individuals show compensatory growth when experiencing good food conditions.
Journal of Apicultural Research | 2014
Romée van der Zee; Robert Brodschneider; Valters Brusbardis; Jean-Daniel Charrière; Róbert Chlebo; Mary F Coffey; Bjørn Dahle; Marica M Drazic; Lassi Kauko; Justinas Kretavicius; Preben Kristiansen; Franco Mutinelli; Christoph Otten; Magnus Peterson; Aivar Raudmets; Violeta Santrac; Ari Seppälä; Victoria Soroker; Grażyna Topolska; Flemming Vejsnæs; Alison Gray
Summary This article presents results of an analysis of winter losses of honey bee colonies from 19 mainly European countries, most of which implemented the standardised 2013 COLOSS questionnaire. Generalised linear mixed effects models (GLMMs) were used to investigate the effects of several factors on the risk of colony loss, including different treatments for Varroa destructor, allowing for random effects of beekeeper and region. Both winter and summer treatments were considered, and the most common combinations of treatment and timing were used to define treatment factor levels. Overall and within country colony loss rates are presented. Significant factors in the model were found to be: percentage of young queens in the colonies before winter, extent of queen problems in summer, treatment of the varroa mite, and access by foraging honey bees to oilseed rape and maize. Spatial variation at the beekeeper level is shown across geographical regions using random effects from the fitted models, both before and after allowing for the effect of the significant terms in the model. This spatial variation is considerable.
Journal of Apicultural Research | 2011
Maria Bouga; Cédric Alaux; Malgorzata Bienkowska; Ralph Büchler; Norman Carreck; Eliza Cauia; Róbert Chlebo; Bjørn Dahle; Raffaele Dall'Olio; Pilar De la Rúa; Aleš Gregorc; Evgeniya Ivanova; Aykut Kence; Meral Kence; Nikola Kezić; Hrisula Kiprijanovska; Peter Kozmus; Per Kryger; Yves Le Conte; António Murilhas; A. Siceanu; Gabriele Soland; Aleksandar Uzunov; Jerzy Wilde
Summary Here, scientists from 19 European countries, most of them collaborating in Working Group 4: “Diversity and Vitality” of COST Action FA 0803 “Prevention of honey bee COlony LOSSes” (COLOSS), review the methodology applied in each country for discriminating between honey bee populations. Morphometric analyses (classical and geometric) and different molecular markers have been applied. Even if the approach has been similar, however, different methodologies regarding measurements, landmarks or molecular markers may have been used, as well as different statistical procedures. There is therefore the necessity to establish common methods in all countries in order to have results that can be directly compared. This is one of the goals of WG4 of the COLOSS project.
Journal of Wildlife Management | 2007
Jon E. Swenson; Bjørn Dahle; Helena Busk; Ole Opseth; Thomas Johansen; Arne Söderberg; Kjell Wallin; Go ran Cederlund
Abstract In North America, brown bears (Ursus arctos) can be a significant predator on moose (Alces alces) calves. Our study in Sweden is the first in which brown bears are the only predator on moose calves. Bears and moose occurred at densities of about 30/1,000 km2 and 920/1,000 km2, respectively, and bears killed about 26% of the calves. Ninety-two percent of the predation took place when calves were <1 month old. Bear predation was probably additive to other natural mortality, which was about 10% in areas both with and without bears. Females that lost their calves in spring produced more calves the following year (1.54 calves/F) than females that kept their calves (1.11 calves/F), which reduced the net loss of calves due to predation to about 22%.
Oecologia | 2009
Andreas Zedrosser; Bjørn Dahle; Ole-Gunnar Støen; Jon E. Swenson
We studied the effects of primiparity on litter size, offspring size, and cub loss in brown bears (Ursus arctos) in two study areas (north, south) in Sweden from 1987 to 2006. Sexually selected infanticide (SSI) has been suggested previously as a mortality factor in our study populations. Females in the south became primiparous earlier than females in the north. Primiparous females had significantly smaller litters of cubs than multiparous females. We found no evidence that primiparity was costly in terms of the interlitter interval. Primiparous mothers had a higher probability of cub loss than multiparous mothers. The probability of cub loss was analyzed separately for the pre-mating and the mating season. The probability of cub loss by primiparous females in the pre-mating season increased with both increasing population density and deteriorating food conditions, whereas the probability of cub loss during the mating season decreased with increasing age of primiparity and increased with male turnover (a variable predicting SSI). The temporal patterns of cub loss by primiparous females suggested that the critical times for reproductive success by primiparous females were the pre-mating season (from birth to shortly after leaving the den) and the mating season. Cub loss in these periods was independent and caused by different factors. Cub loss before the mating season seemed to be most influenced by food conditions, whereas that during the mating season appeared to be caused by SSI.
Journal of Apicultural Research | 2014
M. Alice Pinto; Dora Henriques; Julio Chavez-Galarza; Per Kryger; Lionel Garnery; Romée van der Zee; Bjørn Dahle; Gabriele Soland-Reckeweg; Pilar De la Rúa; Raffaele Dall’Olio; Norman Carreck; J Spencer Johnson
Summary The recognition that the Dark European honey bee, Apis mellifera mellifera, is increasingly threatened in its native range has led to the establishment of conservation programmes and protected areas throughout western Europe. Previous molecular surveys showed that, despite management strategies to preserve the genetic integrity of A. m. mellifera, protected populations had a measurable component of their gene pool derived from commercial C-lineage honey bees. Here we used both sequence data from the tRNAleu-cox2 intergenic mtDNA region and a genome-wide scan, with over 1183 single nucleotide polymorphisms (SNPs), to assess genetic diversity and introgression levels in several protected populations of A. m. mellifera, which were then compared with samples collected from unprotected populations. MtDNA analysis of the protected populations revealed a single colony bearing a foreign haplotype, whereas SNPs showed varying levels of introgression ranging from virtually zero in Norway to about 14% in Denmark. Introgression overall was higher in unprotected (30%) than in protected populations (8%), and is reflected in larger SNP diversity levels of the former, although opposite diversity levels were observed for mtDNA. These results suggest that, despite controlled breeding, some protected populations still require adjustments to the management strategies to further purge foreign alleles, which can be identified by SNPs.
Journal of Wildlife Management | 2009
Eigil Reimers; Leif Egil Loe; Sindre Eftestøl; Jonathan E. Colman; Bjørn Dahle
Abstract Because wild reindeer (Rangifer tarandus) are hunted in southern Norway, reindeer may perceive all recreationists as threats. Potential adverse effects of hunting on reindeer behavior may be exacerbated by other forms of recreation because the number of skiers and hikers in areas inhabited by reindeer has also increased. The Norefjell–Reinsjøfjell wild reindeer area is used extensively for recreation and tourism. Reindeer hunting was introduced in the area in 1992, and harvest rate has been stable at about 38% of winter herd size. We recorded behavioral responses of reindeer to a person approaching directly on foot or skis during 1992 and again in 2002–2006. Compared to 1992, flight-initiation distance increased and fewer groups assessed the observer before taking flight during 2002–2006. In winter, when reindeer are usually comparably more vigilant than in other seasons, flight-initiation distance increased from only 60 m to 115 m and escape distance decreased from 400 m to 210 m. Neither alert distance, calf carcass weights (23.6 ± 0.7 [SE] kg to 22.4 ± 0.2 kg), nor reindeer herd size (661 ± 73 to 579 ± 15) changed during the 15 years of our study. Reindeer appeared to habituate to the observer because they initiated flight at shorter distances as the number of approaches on the same day increased. In Norefjell–Reinsjøfjell, encounters with a person on foot or skis did not result in behavioral responses likely to entail substantial energy costs for reindeer; therefore, hunting at current levels appears compatible with other recreational activities.
European Journal of Wildlife Research | 2008
Bjørn Dahle; Eigil Reimers; Jonathan E. Colman
Reindeer and caribou Rangifer tarandus are reported to avoid human infrastructure such as roads, high-voltage power lines, pipelines, and tourist resorts. Lichens are important forage for reindeer during winter, and their relatively slow growth rates make them vulnerable to overgrazing. Height and volume of lichens are often used as an indicator of grazing pressure by reindeer and, thus, as an indirect measure of Rangifer avoidance of human infrastructure. We sampled lichen height in Cetraria nivalis-dominated communities along 4 and 3 parallel transects located on two parallel mountain ridges in Hardangervidda, south central Norway. The lichen measurements were analyzed in relation to altitude and the distance from four tourist cabins in the area and a highway (Rv7) running perpendicular to the 7 transects. The mountain ridge with 4 transects is part of a much used migratory corridor for wild reindeer R. tarandus tarandus. Along the nonmigratory ridge, lichen height decreased 35% over an 8-km distance from Rv7 and a tourist cabin, indicating reindeer aversion toward Rv7 and/or a tourist cabin. No similar relationship was found for the migration ridge in relation to distance from Rv7 or the tourist cabins. Our results suggest that avoidance of human infrastructure by wild reindeer might be limited where reindeer use of winter pastures is influenced by herd traditions and/or motivation to follow established migration corridors. This has important implications for addressing the use of similar pasture measurements when testing for Rangifer aversion toward human disturbances.