Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bjørn G. Andersen is active.

Publication


Featured researches published by Bjørn G. Andersen.


Science | 1995

Interhemispheric correlation of Late Pleistocene glacial events.

Thomas V. Lowell; Calvin J. Heusser; Bjørn G. Andersen; Patricio I. Moreno; A. Hauser; Linda E. Heusser; Christian Schlüchter; David R. Marchant; George H. Denton

A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and ≥33,500 carbon-14 years before present (14C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,00014C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,72014C yr B.P., and at the beginning of the Younger Dryas at 11,050 14C yr B. P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges.


Geografiska Annaler Series A-physical Geography | 1999

Interhemispheric Linkage of Paleoclimate During the Last Glaciation

George H. Denton; Calvin J. Heusser; T.V. Lowel; Patricio I. Moreno; Bjørn G. Andersen; Linda E. Heusser; C. Schlühter; David R. Marchant

Combined glacial geologic and palynologic data from the southern Lake District, Seno Reloncavi, and Isla Grande de Chiloe in middle latitudes (40°35’–42°25’S) of the Southern Hemisphere Andes suggest (1) that full-glacial or near-full-glacial climate conditions persisted from about 29,400 to 14,550 14C yr BP in late Llanquihue time, (2) that within this late Llanquihue interval mean summer temperature was depressed 6°–8°C compared to modern values during major glacier advances into the outer moraine belt at 29,400, 26,760, 22,295–22,570, and 14,550–14,805 14C yr BP, (3) that summer temperature depression was as great during early Llanquihue as during late Llanquihue time, (4) that climate deteriorated from warmer conditions during the early part to colder conditions during the later part of middle Llanquihue time, (5) that superimposed on long-term climate deterioration are Gramineae peaks on Isla Grande de Chiloe that represent cooling at 44,520–47,110 14C yr BP (T-11), 32,105–35,764 14C yr BP (T-9), 24,895–26,019 14C yr BP (T-7), 21,430–22,774 14C yr BP (T-5), and 13,040–15,200 14C yr BP (T-3), (6) that the initial phase of the glacial/interglacial transition of the last termination involved at least two major steps, one beginning at 14,600 14C yr BP and another at 12,700–13,000 14 C yr BP, and (7) that a late-glacial climate reversal of ≥2–3° C set in close to 12,200 14C yr BP, after an interval of near-interglacial warmth, and continued into Younger Dryas time. The late-glacial climate signal from the southern Chilean Lake District ties into that from proglacial Lago Mascardi in the nearby Argentine Andes, which shows rapid ice recession peaking at 12,400 14C yr BP, followed by a reversal of trend that culminated in Younger-Dryas-age glacier readvance at 11,400–10,200 14C yr BP. Many full- and late-glacial climate shifts in the southern Lake District match those from New Zealand at nearly the same Southern Hemisphere middle latitudes. At the last glacial maximum (LGM), snowline lowering relative to present-day values was nearly the same in the Southern Alps (875 m) and the Chilean Andes (1000 m). Particularly noteworthy are the new Younger-Dryas-age exposure dates of the Lake Misery moraines in Arthurs Pass in the Southern Alps. Moreover, pollen records from the Waikato lowlands on North Island show that a major vegetation shift at close to 14,700 14C yr BP marked the beginning of the last glacial/interglacial transition (Newnham et al. 1989). The synchronous and nearly uniform lowering of snowlines in Southern Hemisphere middle-latitude mountains compared with Northern Hemisphere values suggests global cooling of about the same magnitude in both hemispheres at the LGM. When compared with paleoclimate records from the North Atlantic region, the middle-latitude Southern Hemisphere terrestrial data imply interhemispheric symmetry of the structure and timing of the last glacial/interglacial transition. In both regions atmospheric warming pulses are implicated near the beginning of Oldest Dryas time (∼14,600 14C yr BP) and near the Oldest Dryas/Bolling transition (∼12,700–13,000 14 C yr BP). The second of these warming pulses was coincident with resumption of North Atlantic thermohaline circulation similar to that of the modern mode, with strong formation of Lower North Atlantic Deep Water in the Nordic Seas. In both regions, the maximum Bolling-age warmth was achieved at 12,200–12,500 14 C yr BP, and was followed by a reversal in climate trend. In the North Atlantic region, and possibly in middle latitudes of the Southern Hemisphere, this reversal culminated in a Younger-Dryas-age cold pulse. Although changes in ocean circulation can redistribute heat between the hemispheres, they cannot alone account either for the synchronous planetary cooling of the LGM or for the synchronous interhemispheric warming steps of the abrupt glacial-to-interglacial transition. Instead, the dominant interhemispheric climate linkage must feature a global atmospheric signal. The most likely source of this signal is a change in the greenhouse content of the atmosphere. We speculate that the Oldest Dryas warming pulse originated from an increase in atmospheric water-vapor production by half-precession forcing in the tropics. The major thermohaline switch near the Oldest Dryas/Bolling transition then couldhave triggered another increase in tropical water-vapor production to near-interglacial values.


Science | 2009

High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature.

Joerg M. Schaefer; George H. Denton; Michael R. Kaplan; Aaron E. Putnam; Robert C. Finkel; David J. A. Barrell; Bjørn G. Andersen; Roseanne Schwartz; Andrew Mackintosh; Trevor Chinn; Christian Schlüchter

Vive La Différence How closely do climate changes in the Northern and Southern Hemispheres resemble each other? Much discussion has concentrated on the Holocene, the warm period of the past 11,500 years in which we now live, which represents a baseline to which contemporary climate change can be compared. Schaefer et al. (p. 622; see the Perspective by Balco) present a chronology of glacial movement over the last 7000 years in New Zealand, which they compare to similar records from the Northern Hemisphere. Clear differences are observed between the histories of glaciers in the opposing hemispheres, which may be owing to regional controls. Thus, neither of two popular arguments—that the hemispheres change in-phase or that they change in an anti-phased manner—appear to be correct. The patterns of glacial advances and retreats in New Zealand during the Holocene contrast markedly with those of the Northern Hemisphere. Understanding the timings of interhemispheric climate changes during the Holocene, along with their causes, remains a major problem of climate science. Here, we present a high-resolution 10Be chronology of glacier fluctuations in New Zealand’s Southern Alps over the past 7000 years, including at least five events during the last millennium. The extents of glacier advances decreased from the middle to the late Holocene, in contrast with the Northern Hemisphere pattern. Several glacier advances occurred in New Zealand during classic northern warm periods. These findings point to the importance of regional driving and/or amplifying mechanisms. We suggest that atmospheric circulation changes in the southwest Pacific were one important factor in forcing high-frequency Holocene glacier fluctuations in New Zealand.


Science | 2006

Near-Synchronous Interhemispheric Termination of the Last Glacial Maximum in Mid-Latitudes

Joerg M. Schaefer; George H. Denton; David J. A. Barrell; Susan Ivy-Ochs; Peter W. Kubik; Bjørn G. Andersen; Fred M. Phillips; Thomas V. Lowell; Christian Schlüchter

Isotopic records from polar ice cores imply globally asynchronous warming at the end of the last glaciation. However, 10Be exposure dates show that large-scale retreat of mid-latitude Last Glacial Maximum glaciers commenced at about the same time in both hemispheres. The timing of retreat is consistent with the onset of temperature and atmospheric CO2 increases in Antarctic ice cores. We suggest that a global trend of rising summer temperatures at the end of the Last Glacial Maximum was obscured in North Atlantic regions by hypercold winters associated with unusually extensive winter sea ice.


Geografiska Annaler Series A-physical Geography | 1999

Geomorphology, Stratigraphy, and Radiocarbon Chronology of LlanquihueDrift in the Area of the Southern Lake District, Seno Reloncaví, and Isla Grande de Chiloé, Chile

George H. Denton; Thomas V. Lowell; Christoph Heusser; Christian Schlüchter; Bjørn G. Andersen; Linda E. Heusser; Patricio I. Moreno; David R. Marchant

Glacial geomorphologic features composed of (or cut into) Llanquihue drift delineate former Andean piedmont glaciers in in the region of the southern Chilean Lake District,Seno Reloncavi, Golfo de Ancud, and northern Golfo Corcovado during the last glaciation. These landforms include extensive moraine belts, main and subsidiary outwash plains, kame terraces, and meltwater spillways. Nt Numerous radiocarbon dates document Andean ice advances into the moraine belts during the last glacial maximum (LGM) at 29,363-29,385 14 C yr BP, 26,797 14 C yr BP, 22,295-22,570 14 C yr BP, and 14,805-14,869 14 C yr BP.Advances may also have culminated at close to 21,000 14 C yr BP, shortly before 17,800 14 C yr BP, and shortly before 15,730 14 C yr BP. The maximum at 22,295-22,567 14 C yr BP was probably the most extensive of the LGM in the northern part of the field area, whereas that at 14,805-14,869 14 C yr BP was the most extensive in the southern part. Snowline depression during these maxima was about 1000 m. Andean piedmont glaciers did not advance into the outer Llanquihue moraine belts during the portion of middle Llanquihue time between 29,385 14 C yr BP and more than 39,660 14 C yr BP. In the southern part of the field area, the Golfo de Ancud lobe, as well the Golfo Corcovado lobe, achieved a maximum at the outermost Llanquihue moraine prior to 49,892 14 C yr BP. Pollen analysis of the Taiquemo mire,which is located on this moraine, suggests that the old Llanquihue advance probably corresponds to the time of marine isotope stage 4. The implication is that Andean snowline was then depressed as much as during the LGM. A Llanquihue-age glacier expansion into the outer moraine belts also occurred more than about 40,000 14 C yr BP for the Lago Llanquihue piedmont glacier.


Nature | 2010

Glacier retreat in New Zealand during the Younger Dryas stadial

Michael R. Kaplan; Joerg M. Schaefer; George H. Denton; David J. A. Barrell; Trevor Chinn; Aaron E. Putnam; Bjørn G. Andersen; Robert C. Finkel; Roseanne Schwartz; Alice M. Doughty

Millennial-scale cold reversals in the high latitudes of both hemispheres interrupted the last transition from full glacial to interglacial climate conditions. The presence of the Younger Dryas stadial (∼12.9 to ∼11.7 kyr ago) is established throughout much of the Northern Hemisphere, but the global timing, nature and extent of the event are not well established. Evidence in mid to low latitudes of the Southern Hemisphere, in particular, has remained perplexing. The debate has in part focused on the behaviour of mountain glaciers in New Zealand, where previous research has found equivocal evidence for the precise timing of increased or reduced ice extent. The interhemispheric behaviour of the climate system during the Younger Dryas thus remains an open question, fundamentally limiting our ability to formulate realistic models of global climate dynamics for this time period. Here we show that New Zealand’s glaciers retreated after ∼13 kyr bp, at the onset of the Younger Dryas, and in general over the subsequent ∼1.5-kyr period. Our evidence is based on detailed landform mapping, a high-precision 10Be chronology and reconstruction of former ice extents and snow lines from well-preserved cirque moraines. Our late-glacial glacier chronology matches climatic trends in Antarctica, Southern Ocean behaviour and variations in atmospheric CO2. The evidence points to a distinct warming of the southern mid-latitude atmosphere during the Younger Dryas and a close coupling between New Zealand’s cryosphere and southern high-latitude climate. These findings support the hypothesis that extensive winter sea ice and curtailed meridional ocean overturning in the North Atlantic led to a strong interhemispheric thermal gradient during late-glacial times, in turn leading to increased upwelling and CO2 release from the Southern Ocean, thereby triggering Southern Hemisphere warming during the northern Younger Dryas.


Quaternary Research | 1989

Late Quaternary ice-surface fluctuations of Hatherton Glacier, Transantarctic Mountains

James G. Bockheim; Scott C. Wilson; George H. Denton; Bjørn G. Andersen; Minze Stuiver

Abstract Former longitudinal profiles of Hatherton Glacier, an outlet through the Transantarctic Mountains, constrain nearby polar plateau elevations and ice-shelf grounding in the southwestern Ross Embayment. Four gravel drift sheets of late Quaternary age beside Hatherton Glacier are, from youngest to oldest, Hatherton, Britannia I, Britannia II, and Danum. The Hatherton drift limit is uniformly 20 to 70 m above the present ice surface. The Britannia II drift limit is within 100 m of the present surface of uppermost Hatherton Glacier but is 450 m above middle Hatherton Glacier. Extrapolation of this profile downglacier indicates a surface elevation 1100 m above the present Ross Ice Shelf. The Britannia I drift limit is parallel to, but 50–100 m below, Britannia II drift. The Danum drift limit is parallel to, but 50–100 m above, the Britannia II profile. From correlation with drifts near McMurdo Sound and from local 14 C dates, we assign an early Holocene age to Hatherton drift, a late Wisconsin age to Britannia drifts, and an age of marine isotope Stage 6 to Danum drift. By our age model, the upper reaches of Hatherton Glacier (and presumably the adjacent polar plateau) have not exceeded their current elevations by more than 100–150 m during the last two complete global glacial-interglacial cycles, whereas the middle and lower reaches of Hatherton Glacier have thickened considerably during the last two global glaciations (late Wisconsin and marine isotope Stage 6). The effect of ice-shelf grounding probably was the major control of these changes of Hatherton Glacier. Holocene ice-surface lowering probably represents the last pulse of grounding-line recession in the southwestern Ross Embayment.


Quaternary Research | 1989

Late Quaternary ice-surface fluctuations of Beardmore Glacier, Transantarctic Mountains

George H. Denton; James G. Bockheim; Scott C. Wilson; James E. Leide; Bjørn G. Andersen

Abstract Former longitudinal profiles of Beardmore Glacier, an outlet through the Transantarctic Mountains, constrain polar plateau elevations near the center of Antarctica and ice-shelf grouding in the southern Ross Embayment. Three gravel drift sheets of late Quaternary age occur alongside Beardmore Glacier. Plunket drift, the youngest, is parallel to and 7–30 m above the present ice surface. The upper limit of Beardmore drift, intermediate in age, is within 35–40 m of the present ice surface near the polar plateau but about 1100 m above the present ice surface near the glacier mouth. The upper limit of Meyer drift, the oldest, is parallel to and 30–50 m above Beardmore drift. From correlation with numerically dated drifts farther north, we assign an early Holocene age to Plunket drift, a late Wisconsin age to Beardmore drift, and an age of marine isotope Stage 6 to Meyer drift. By our age model, Beardmore Glacier was close to current elevations in its upper reaches and thickened considerably in its middle and lower reaches during the last two global glaciations represented by Beardmore and Meyer drifts. Most likely, grounded ice in the southern Ross Embayment caused such thickening of Beardmore Glacier almost to the polar plateau. A concomitant decline in precipitation is implied by ice-cap retreat on the nearby Dominion Range and is consistent with little change of upper Beardmore Glacier. Ice-shelf grounding most likely resulted from lowered sea level and/or basal melting. Lower than present precipitation was probably caused by colder air temperatures and more-distant open water. The Plunket profile records Holocene ice-surface lowering from increased surface ablation, decreased ice flow, or grounding-line recession.


Journal of Quaternary Science | 1996

Full-glacial — late-glacial palaeoclimate of the Southern Andes: evidence from pollen, beetle and glacial records

Calvin J. Heusser; Thomas V. Lowell; Linda E. Heusser; Arturo Hauser; Bjørn G. Andersen; George H. Denton

Palaeoecological studies carried out in the Chilean Lake District and Chilotan Archipelago (41°–43°S) record full-glacial and late-glacial pollen assemblages beginning just after 21000 and beetle assemblages after 18000, both sets extending until 10000 14C yr BP. Pollen records indicate that Subantarctic Parkland, the vegetation of the early millennia of record, changed after about 14000 yr BP to become open woodland and later North Patagonian Evergreen Forest. Assemblages of plants and beetles, responding more or less in unison to a strong rise in temperature (≥ 6°C), behaved in accord at around 14000 until 13000–12500 yr BP, the beetle fauna displaying a marked increase in obligate forest types. During full-glacial conditions (17400–16100 and 15300 and 14400 yr BP) and in the late-glacial interval (after about 13000 yr BP), however, climate evidently coerced populations dissimilarly, the pollen sequence showing an increase in plant taxa indicative of colder climate, whereas the beetle fauna underwent little or no variation. Contrasting climate modes implied by plants and beetles may be attributed to differential responses to apparent low-order temperature changes (≤ 2–3°C).


Quaternary International | 1989

The last interglacial-glacial cycle in fennoscandia

Bjørn G. Andersen; Jan Mangerud

Abstract The climate and glacier fluctuations during the last interglacial-glacial cycle in Fennoscandia seem to correspond roughly in time with the climate fluctuations recorded in France-Germany-Holland. However, the climate in Fennoscandia was considerably colder, and the coldest phases are recorded as periods with glacier fluctuations. Admittedly, the exact age and amplitudes of some fluctuations are still much debated.

Collaboration


Dive into the Bjørn G. Andersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alice M. Doughty

Victoria University of Wellington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge