Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bjørn Jamtveit is active.

Publication


Featured researches published by Bjørn Jamtveit.


Nature | 2004

Release of methane from a volcanic basin as a mechanism for initial Eocene global warming

Henrik Svensen; Sverre Planke; Anders Malthe-Sørenssen; Bjørn Jamtveit; Reidun Myklebust; Torfinn Rasmussen Eidem; S. S. Rey

A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (∼10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the Vøring and Møre basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane—transported to the ocean or atmosphere through the vent complexes—close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (∼250 million years ago) and the Karoo Igneous Province (∼183 million years ago).


Precambrian Research | 2001

Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite (NW India)

Trond H. Torsvik; L.M. Carter; Lewis D. Ashwal; S.K. Bhushan; Manoj K. Pandit; Bjørn Jamtveit

Abstract New palaeomagnetic data from the Neoproterozoic felsic volcanic rocks of the Malani igneous suite (MIS) in NW India, combined with data from an earlier study, yield a palaeomagnetic pole with latitude=74.5°N, longitude=71.2°E (dp/dm=7.4/9.7°). A statistically positive fold test and remanences carried by typical high-temperature oxidation (deuteric) minerals support a primary magnetic signature. U/Pb ages from MIS (771–751 Ma) overlap with those for granitoids and dolerite dykes from the Seychelles microcontinent (mainly 748–755 Ma), and palaeomagnetic data for both entities can be matched with a tight reconstruction fit (Seychelles→India: Euler latitude=25.8°N, longitude=330°E, rotation angle=28°). In this Neoproterozoic time interval, MIS and the Seychelles must have been located at intermediate northerly latitudes along the western margin of Rodinia, with magmatism that probably originated in a continental arc. The most reliable, dated palaeomagnetic data (±756 Ma) from MIS, Seychelles and Australia require a crucial reappraisal of the timing and plate dynamics of Rodinia break-up and Gondwana assemblage. These new data necessitate an entirely different fit of East Gondwana elements than previously proposed, and also call to question the validity of the Southwest US–East Antarctic and Australia–Southwest US models. The palaeomagnetic data mandate that Greater India was located west of Australia rather than forming a conjugate margin with East Antarctica in the Mid-Neoptroterozoic. Break-up of Rodinia along western Laurentia may therefore have taken place along two major Neoproterozoic rifts; one leading to separation of Laurentia and Australia–East Antarctica, and the second between Australia and India.


Contributions to Mineralogy and Petrology | 1990

Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, Western Norway

Bjørn Jamtveit; Kurt Bucher-Nurminen; Håkon Austrheim

During the Caledonian orogeny large parts of the western margin of the Baltic shield were disrupted, sliced and stacked. Caledonian deformation resulted in a massif thickening of the continental crust. Mafic granulites and granulite facies meta-anorthosites build up a large portion of the Bergen Arcs terrane in southwestern Norway. The rocks represent typical Precambrian continental lower crust. These rocks experienced extensive eclogitization in response to stacking and crustal thickening during the Caledonian orogenic cycle. Eclogite formation resulted from shear deformation and associated infiltration of H2O-rich fluids (XH2O≥0.75). During an early stage, eclogite facies mineralogy formed in extension fractures (veins). The veins are probably related to hydraulic fracture systems which transported the inferred fluid phase. During the main stage, eclogitization occurred along shear zones ranging from centimeters to tens of meters in thickness. Eclogite forming reactions are shown to consume H2O, alkalies and to release SiO2. Much of the SiO2 released by the eclogitization process can be found in late quartz vein systems. The eclogitization took place at a temperature of about 700°C and a pressure between 18 and 21 kbar. Fluid infiltration was supported by a decrease in rock volume during reaction (ΔVsolids<0). The negative volume change of reaction occurs despite that the process of eclogitization involves hydration reactions. The formation of eclogite from granulite produces approximately 15 KJ heat per 100 cm3 original granulite. Numerical modeling of the regional temperature effects associated with partial hydration of the lower crust suggests that these processes may not cause large perturbations on the geotherm. Both, transport of heat and matter by advection of the fluid phase is negligible on a regional scale.


Journal of Structural Geology | 2000

Kinetics of crack-sealing, intergranular pressure solution, and compaction around active faults

François Renard; Jean-Pierre Gratier; Bjørn Jamtveit

Geological evidence indicates that fluids play a key role during the seismic cycle. After an earthquake, fractures are open in the fault and in the surroundings rocks. With time, during the interseismic period, the permeability of the fault and the country rocks tends to decrease by gouge compaction and fracture healing and sealing. Dissolution along stylolite seams provides the matter that fills the fractures, whereas intergranular pressure solution is responsible for gouge compaction. If these processes are fast enough during the seismic cycle, they can modify the creep properties of the fault. Based on field observations and experimental data, we model the porosity decrease by pressure solution processes around an active fault after an earthquake. We arrive at plausible rates of fracture sealing that are comparable to the recurrence time for earthquakes. We also study the sensitivity of these rates to various parameters such as grain size, fracture spacing, and the coeAcient of diAusion along grain


Geological Society, London, Special Publications | 2004

Hydrothermal vent complexes associated with sill intrusions in sedimentary basins

Bjørn Jamtveit; Henrik Svensen; Yuri Y. Podladchikov; Sverre Planke

Abstract Subvolcanic intrusions in sedimentary basins cause strong thermal perturbations and frequently cause extensive hydrothermal activity. Hydrothermal vent complexes emanating from the tips of transgressive sills are observed in seismic profiles from the Northeast Atlantic margin, and geometrically similar complexes occur in the Stormberg Group within the Late Carboniferous-Middle Jurassic Karoo Basin in South Africa. Distinct features include inward-dipping sedimentary strata surrounding a central vent complex, comprising multiple sandstone dykes, pipes, and hydrothermal breccias. Theoretical arguments reveal that the extent of fluid-pressure build-up depends largely on a single dimensionless number (Ve) that reflects the relative rates of heat and fluid transport. For Ve >> 1, ‘explosive’ release of fluids from the area near the upper sill surface triggers hydrothermal venting shortly after sill emplacement. In the Karoo Basin, the formation of shallow (< 1 km) sandstone-hosted vents was initially associated with extensive brecciation, followed by emplacement of sandstone dykes and pipes in the central parts of the vent complexes. High fluid fluxes towards the surface were sustained by boiling of aqueous fluids near the sill. Both the sill bodies and the hydrothermal vent complexes represent major perturbations of the permeability structure of the sedimentary basin, and are likely to have long time-scale effects on its hydrogeological evolution.


Journal of the Geological Society | 2006

Structure and evolution of hydrothermal vent complexes in the Karoo Basin, South Africa

Henrik Svensen; Bjørn Jamtveit; Sverre Planke; Luc Chevallier

The Karoo large igneous province, formed at c. 183 Ma, is characterized by the presence of voluminous basaltic intrusive complexes within the Karoo Basin, extrusive lava sequences and hydrothermal vent complexes. These last are pipe-like structures, up to several hundred metres in diameter, piercing the horizontally stratified sediments of the basin. Detailed mapping of two sediment-dominated hydrothermal vent complexes shows that they are composed of sediment breccias and sandstone. The breccias cut and intrude tilted host rocks, and are composed of mudstone and sandstone fragments with rare dolerite boulders. Sandstone clasts in the breccias are locally cemented by zeolite, which represents the only hydrothermal mineral in the vent complexes. Our data document that the hydrothermal vent complexes were formed by one or a few phreatic events, leading to the collapse of the surrounding sedimentary strata. We propose a model in which hydrothermal vent complexes originate in contact metamorphic aureoles around sill intrusions. Heating and expansion of host rock pore fluids resulted in rapid pore pressure build-up and phreatic eruptions. The hydrothermal vent complexes represent conduits for gases and fluids produced in contact metamorphic aureoles, slightly predating the onset of the main phase of flood volcanism.


Geological Society, London, Special Publications | 2004

Formation of saucer-shaped sills

Anders Malthe-Sørenssen; Sverre Planke; Henrik Svensen; Bjørn Jamtveit

Abstract We have developed a coupled model for sill emplacement in sedimentary basins. The intruded sedimentary strata are approximated as an elastic material modelled using a discrete element method. A non-viscous fluid is used to approximate the intruding magmatic sill. The model has been used to study quasi-static sill emplacement in simple basin geometries. The simulations show that saucer-shaped sill complexes are formed in the simplest basin configurations defined as having homogeneous infill and initial isotropic stress conditions. Anisotropic stress fields are formed around the sill tips during the emplacement due to uplift of the overburden. The introduction of this stress asymmetry leads to the formation of transgressive sill segments when the length of the horizontal segment exceeds two to three times the overburden thickness. New field and seismic observations corroborate the results obtained from the modelling. Recent fieldwork in undeformed parts of the Karoo Basin, South Africa, shows that saucer-shaped sills are common in the middle and upper parts of the basin. Similar saucer shaped sill complexes are also mapped on new two- and three-dimensional seismic data offshore of Mid-Norway and on the NW Australian shelf, whereas planar and segmented sheet intrusions are more common in structured and deep basin provinces.


Geophysical Research Letters | 2001

Enhanced pressure solution creep rates induced by clay particles: Experimental evidence in salt aggregates

François Renard; Dag Kristian Dysthe; Jens Feder; Knut Bjørlykke; Bjørn Jamtveit

Pressure solution is responsible for mechano-chemical compaction of sediments in the upper crust (2–10 km). This process also controls porosity variations in a fault gouge after an earthquake. We present experimental results from chemical compaction of aggregates of halite mixed with clays. It is shown that clay particles (1–5 microns) greatly enhance the deformation by pressure solution in salt aggregates (100–200 micron), the strain rates being 50% to 200% faster in samples containing 10% clays than for clay-free samples. Even the presence of 1% clay increases the strain rate significantly. We propose that clay particles enhance pressure solution creep because these microscopic minerals are trapped within the salt particle contacts where they allow faster diffusion of solutes from the particle contacts to the pore space and inhibit grain boundary formation.


Geology | 2012

The interface-scale mechanism of reaction-induced fracturing during serpentinization

Oliver Plümper; Anja Røyne; Anna Magrasó; Bjørn Jamtveit

Peridotite serpentinization has first-order effects on geochemical and petrophysical processes in the lithosphere. This process induces intensive fracturing, generating fluid pathways to facilitate the hydration of vast amounts of originally impermeable rocks, but the mechanism linking interfacial reaction processes with fracture propagation has not been understood. By combining microstructural characteristics of olivine lizardite-serpentinization with fundamental aspects of interface-coupled dissolution-precipitation and crack growth theory, we propose a microstructurally consistent, self-propagating fracturing mechanism. Fracturing is driven by stress generated from the growth and transformation of a metastable amorphous proto-serpentine phase, where stress is localized within surface perturbations (etch pits and coalesced etch pits) that originate from the anisotropic dissolution of olivine. Water migration into fractures reiterates the process, resulting in hierarchical olivine grain segmentation. Our results indicate that the advancement of serpentinization at the grain scale is independent of solid-state diffusion and does not rely on external forces.


Earth and Planetary Science Letters | 2001

The water content of olivines from the North Atlantic Volcanic Province

Bjørn Jamtveit; Richard A. Brooker; Kent Brooks; Lotte Melchior Larsen; Tom Pedersen

The water content of olivine crystals from picrites and basalts from the North Atlantic Volcanic Province has been estimated using non-polarised Fourier transform infrared spectra. H2O concentrations vary from about 18 ppm by weight to below the detection limit of ca. 0.5 ppm. The most H2O-poor olivines (≤0.5 ppm H2O) probably reflect olivine crystallisation or re-equilibration at shallow crustal levels, possibly after magma degassing. However, some of the Mg-rich olivines (Fo87–91.5) have elevated H2O contents (3–7 ppm) and indicate the presence of mantle source regions with >300 ppm H2O for any reasonable crystallisation depth. The elevated H2O content may be sufficiently high to significantly affect the mantle viscosity and melting behaviour and thus contribute to the simultaneous production of melt over a vast area from Baffin Island to the British Isles at 58–62 Ma.

Collaboration


Dive into the Bjørn Jamtveit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge