Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bjorn K. Song is active.

Publication


Featured researches published by Bjorn K. Song.


American Journal of Physiology-heart and Circulatory Physiology | 2011

The rate of O2 loss from mesenteric arterioles is not unusually high

Aleksander S. Golub; Bjorn K. Song; Roland N. Pittman

The O(2) disappearance curve (ODC) recorded in an arteriole after the rapid arrest of blood flow reflects the complex interaction among the dissociation of O(2) from hemoglobin, O(2) diffusivity, and rate of respiration in the vascular wall and surrounding tissue. In this study, the analysis of experimental ODCs allowed the estimation of parameters of O(2) transport and O(2) consumption in the microcirculation of the mesentery. We collected ODCs from rapidly arrested blood inside rat mesenteric arterioles using scanning phosphorescence quenching microscopy (PQM). The technique was used to prevent the artifact of accumulated O(2) photoconsumption in stationary media. The observed ODC signatures were close to linear, in contrast to the reported exponential decline of intra-arteriolar Po(2). The rate of Po(2) decrease was 0.43 mmHg/s in 20-μm-diameter arterioles. The duration of the ODC was 290 s, much longer than the 12.8 s reported by other investigators. The arterioles associated with lymphatic microvessels had a higher O(2) disappearance rate of 0.73 mmHg/s. The O(2) flux from arterioles, calculated from the average O(2) disappearance rate, was 0.21 nl O(2)·cm(-2)·s(-1), two orders of magnitude lower than reported in the literature. The physical upper limit of the O(2) consumption rate by the arteriolar wall, calculated from the condition that all O(2) is consumed by the wall, was 452 nl O(2)·cm(-3)·s(-1). From consideration of the microvascular tissue volume fraction in the rat mesentery of 6%, the estimated respiration rate of the vessel wall was ∼30 nl O(2)·cm(-3)·s(-1). This result was three orders of magnitude lower than the respiration rate in rat mesenteric arterioles reported by other investigators. Our results demonstrate that O(2) loss from mesenteric arterioles is small and that the O(2) consumption by the arteriolar wall is not unusually large.


Microvascular Research | 2014

Effects of a hemoglobin-based oxygen carrier (HBOC-201) and derivatives with altered oxygen affinity and viscosity on systemic and microcirculatory variables in a top-load rat model

Bjorn K. Song; William H. Nugent; Paula F. Moon-Massat; Roland N. Pittman

The effects of a polymerized bovine hemoglobin-based oxygen carrier (HBOC) and two derivatives on arteriolar vasoactivity and tissue oxygen tension were explored by administering HBOC in a dose-response fashion to normovolemic rats. The effect of oxygen affinity (P50) and viscosity was also explored, where the P50 and viscosity of the parent compound (HBOC-201) and its modifications (MP50 and LP50A) were as follows: 40mmHg and 3.0cP (HBOC-20l); 18mmHg and 4.4cP (MP50); and 17mmHg and 12.1cP (LP50A). Anesthetized male Sprague-Dawley rats (N=32) were randomized to receive one of the HBOC solutions, and were administered four infusions that increased in concentration for each dose (2, 22, 230 and 780mg/kg, IV). Data were compared to rats receiving an equivalent volume for each of the four infusions (0.4, 0.4, 3.8, 13.1ml/kg, IV) of iso-oncotic 5.9% human serum albumin (HSA). Increasing doses of either HBOC solutions or HSA were associated with increasing MAP. Doses 3 and 4 of HBOC-201, MP50 and HSA produced significant increases in MAP, whereas similar increases began at a lower dose (Dose 2) with LP50A. There were no significant changes in arteriolar diameters at any dose for any group. Interstitial partial pressure of oxygen (ISF PO2) remained unchanged for HBOC-201, MP50 and HSA, but LP50A caused a significant decrease in ISF PO2 compared to baseline after Doses 3 and 4. In conclusion, there was no evidence that HBOC-201 would perform better with increased oxygen affinity (40 to 18mmHg) or viscosity (3.0 to 4.4cP).


Military Medicine | 2013

Effects of Top-Loading a Zero-Link Bovine Hemoglobin, OxyVita, on Systemic and Microcirculatory Variables

Bjorn K. Song; William H. Nugent; Paula F. Moon-Massat; Charles Auker; Richard M. McCarron; Roland N. Pittman

This study was designed to test the effect of top-load infusions of increasing doses of two versions of the novel, high molecular weight hemoglobin-based oxygen carrier, OxyVita and OxyVita C solution ([Hb] = 6 g/dL), on mean arterial pressure (MAP), arteriolar diameter, and tissue oxygenation. Experiments were carried out on 18 anesthetized male Sprague-Dawley rats in which microcirculatory observations were made on the spinotrapezius muscle. Intravenous infusions of four increasing doses of the OxyVita solutions (2, 22, 230, and 780 mg/kg) were made for each group, and a separate group of animals was used for volume control. Tissue oxygenation was measured as interstitial fluid (ISF) PO2 using phosphorescence quenching microscopy. Increasing doses of either OxyVita solution or Lactated Ringers solution (LRS, volume control) were associated with increasing MAP. For LRS infusions, MAP returned to baseline between each incremental dose injected, whereas there was an incomplete return for either of the OxyVita solutions. ISF PO2 for OxyVita was significantly lower than that for either LRS or OxyVita C, whereas ISF PO2 for OxyVita C was never statistically different from LRS. There were no significant changes in arteriolar diameters for LRS and either of the OxyVita solutions.


Microvascular Research | 2016

Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

William H. Nugent; Bjorn K. Song; Roland N. Pittman; Aleksander S. Golub

Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues.


Shock | 2017

Effects of Sanguinate® on Systemic and Microcirculatory Variables in a Model of Prolonged Hemorrhagic Shock

William H. Nugent; Ramon F. Cestero; Kevin R. Ward; Ronald Jubin; Abe Abuchowski; Bjorn K. Song


The FASEB Journal | 2015

Systemic and Microcirculatory Vasoactive Effects of a Third Generation Perfluorocarbon in a Rodent Top-Load Model

Randy F. Crossland; Antoni R. Macko; Bjorn K. Song; Forest R. Sheppard


Archive | 2015

no-flow conditions Oxygen release from arterioles with normal flow and

Pedro Cabrales; Amy G. Tsai; Paul C. Johnson; M. Intaglietta; Aleksander S. Golub; Matthew C. Barker; Roland N. Pittman; Bjorn K. Song


Archive | 2015

oxygen concentration measurements in vivo Calibration of Pd-porphyrin phosphorescence for

Can Ince; Aleksander S. Golub; Matthew C. Barker; Roland N. Pittman; Egbert G. Mik; Brad T. Cookson; Alex K.-Y. Jen; Mary E. Lidstrom; Deirdre Meldrum; Lloyd Burgess; Joe Dragavon; Tim Molter; Cody Young; Tim J. Strovas; Sarah C. McQuaide; Mark R. Holl; Meng Zhang; Bjorn K. Song


Archive | 2014

The Effect of a Third Generation Hemostatic Dressing in a Subclavian Artery and Vein Transection Porcine Model

Bjorn K. Song; Forest R. Sheppard; Antoni R. Macko; Rene Alvarez


The FASEB Journal | 2009

TISSUE OXYGENATION AND OXYGEN CONSUMPTION FOLLOWING HEMORRHAGE AND RESUSCITATION USING A HEMOGLOBIN-BASED OXYGEN CARRIER AND HUMAN SERUM ALBUMIN

Bjorn K. Song; Michael D Connery; Paula F. Moon-Massat; Roland N. Pittman

Collaboration


Dive into the Bjorn K. Song's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William H. Nugent

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Paula F. Moon-Massat

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex K.-Y. Jen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Amy G. Tsai

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Amy S. Miner

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge