Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Neu is active.

Publication


Featured researches published by Björn Neu.


Clinical Hemorheology and Microcirculation | 2009

New guidelines for hemorheological laboratory techniques

Oguz K. Baskurt; Michel Boynard; Giles C. Cokelet; Philippe Connes; Brian M. Cooke; Sandro Forconi; Fulong Liao; Max R. Hardeman; Friedrich Jung; Herbert J. Meiselman; Gerard B. Nash; Norbert Nemeth; Björn Neu; Bo Sandhagen; Sehyun Shin; George B. Thurston; Jean Luc Wautier

This document, supported by both the International Society for Clinical Hemorheology and the European Society for Clinical Hemorheology and Microcirculation, proposes new guidelines for hemorheolog ...


Biophysical Journal | 2002

Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions

Björn Neu; Herbert J. Meiselman

Polymer-induced red blood cell (RBC) aggregation is of current basic science and clinical interest, and a depletion-mediated model for this phenomenon has been suggested; to date, however, analytical approaches to this model are lacking. An approach is thus described for calculating the interaction energy between RBC in polymer solutions. The model combines electrostatic repulsion due to RBC surface charge with osmotic attractive forces due to polymer depletion near the RBC surface. The effects of polymer concentration and polymer physicochemical properties on depletion layer thickness and on polymer penetration into the RBC glycocalyx are considered for 40 to 500 kDa dextran and for 18 to 35 kDa poly (ethylene glycol). The calculated results are in excellent agreement with literature data for cell-cell affinities and with RBC aggregation-polymer concentration relations. These findings thus lend strong support to depletion interactions as the basis for polymer-induced RBC aggregation and suggest the usefulness of this approach for exploring interactions between macromolecules and the RBC glycocalyx.


Journal of Microencapsulation | 2001

Biological cells as templates for hollow microcapsules.

Björn Neu; Andreas Voigt; R. Mitlöhner; Stefano Leporatti; Changyou Gao; Edwin Donath; H. Kiesewetter; H. Möhwald; H. J. Meiselman; Hans Bäumler

Microcapsules in the micrometer size range with walls of nanometer thickness are of both scientific and technological interest, since they can be employed as micro- and nano-containers. Liposomes represent one example, yet their general use is hampered due to limited stability and a low permeability for polar molecules. Microcapsules formed from polyelectrolytes offer some improvement, since they are permeable to small polar molecules and resistant to chemical and physical influences. Both types of closed films are, however, limited by their spherical shape which precludes producing capsules with anisotropic properties. Biological cells possess a wide variety of shapes and sizes, and, thus, using them as templates would allow the production of capsules with a wide range of morphologies. In the present study, human red blood cells (RBC) as well as Escherichia coli bacteria were used; these cells were fixed by glutardialdehyde prior to layer-by-layer (LbL) adsorption of polyelectrolytes. The growth of the layers was verified by electrophoresis and flow cytometry, with morphology investigated by atomic force and electron microscopy; the dissolution process of the biological template was followed by confocal laser scanning microscopy. The resulting microcapsules are exact copies of the biological template, exhibit elastic properties, and have permeabilities which can be controlled by experimental parameters; this method for microcapsule fabrication, thus, offers an important new approach for this area of biotechnology.Microcapsules in the micrometer size range with walls of nanometer thickness are of both scientific and technological interest, since they can be employed as micro- and nano-containers. Liposomes represent one example, yet their general use is hampered due to limited stability and a low permeability for polar molecules. Microcapsules formed from polyelectrolytes offer some improvement, since they are permeable to small polar molecules and resistant to chemical and physical influences. Both types of closed films are, however, limited by their spherical shape which precludes producing capsules with anisotropic properties. Biological cells possess a wide variety of shapes and sizes, and, thus, using them as templates would allow the production of capsules with a wide range of morphologies. In the present study, human red blood cells (RBC) as well as Escherichia coli bacteria were used; these cells were fixed by glutardialdehyde prior to layer-by-layer (LbL) adsorption of polyelectrolytes. The growth of the layers was verified by electrophoresis and flow cytometry, with morphology investigated by atomic force and electron microscopy; the dissolution process of the biological template was followed by confocal laser scanning microscopy. The resulting microcapsules are exact copies of the biological template, exhibit elastic properties, and have permeabilities which can be controlled by experimental parameters; this method for microcapsule fabrication, thus, offers an important new approach for this area of biotechnology.


Archive | 2011

Red blood cell aggregation

Oguz K. Baskurt; Björn Neu; J Herbert Meiselman.

Red blood cell aggregation / , Red blood cell aggregation / , کتابخانه دیجیتال جندی شاپور اهواز


Biophysical Journal | 2008

Effects of Dextran Molecular Weight on Red Blood Cell Aggregation

Björn Neu; Rosalinda B. Wenby; Herbert J. Meiselman

The reversible aggregation of human red blood cells (RBC) by proteins or polymers continues to be of biologic and biophysical interest, yet the mechanistic details governing the process are still being explored. Although a depletion model with osmotic attractive forces due to polymer depletion near the RBC surface has been proposed for aggregation by the neutral polyglucose dextran, its applicability at high molecular mass has not been established. In this study, RBC aggregation was measured over a wide range of dextran molecular mass (70 kDa to 28 MDa) at concentrations <or=2 g/dL. Our results indicate that aggregation does not monotonically increase with polymer size; instead, it demonstrates an optimum dextran molecular mass around 200-500 kDa. We used a model for depletion-mediated RBC aggregation to calculate the expected depletion energies. This model was found to be consistent with the experimental results and thus provides new insight into polymer-RBC interactions.


Biophysical Journal | 2003

Cell-Cell Affinity of Senescent Human Erythrocytes

Björn Neu; Samuel O. Sowemimo‐Coker; Herbert J. Meiselman

During their 120-day life span, human red blood cells (RBC) undergo several physicochemical changes, including an increased tendency to aggregate in plasma or polymer solutions. This study was designed to examine potential associations between age-related differences in RBC mobility, aggregation, and membrane glycocalyx properties for cells suspended in buffer and in 3 g/dl solutions of 70.3 kDa dextran. A recent model for depletion-mediated RBC aggregation was employed to calculate the changes of glycocalyx properties that were consistent with experimental electrophoretic mobility (EPM) and aggregation data. Young and old cells were obtained by density separation, after which aggregation and EPM were determined versus ionic strength; old cells exhibited a two- to threefold greater aggregation in dextran. EPM of old cells was identical to young cells in polymer-free media yet was 4% greater in dextran. The greater EPM for old RBC indicates a larger polymer depletion layer, which could be explained either by a 10-15% decrease of their glycocalyx thickness or a similar percentage decrease of polymer penetration into their glycocalyx. The larger depletion layer leads to markedly elevated cell-cell affinities for old cells, with the computed affinity increases consistent with enhanced old RBC aggregation. These results provide a rational explanation for the aggregation and EPM behavior of old RBC, and raise the possibility of depletion-mediated interactions contributing to senescent cell removal from the circulation.


Small | 2012

Surface functionalization of nanoparticles to control cell interactions and drug release.

Rongcong Luo; Björn Neu; Subbu S. Venkatraman

Nanoparticles made from poly(dl-lactide-co-glycolide) (PLGA) are used to deliver a wide range of bioactive molecules, due to their biocompatibility and biodegradability. This study investigates the surface modification of PLGA nanoparticles via the layer-by-layer (LbL) deposition of polyelectrolytes, and the effects of these coatings on the release behavior, cytotoxicity, hemolytic activity, and cellular uptake efficiency. PLGA nanoparticles are modified via LbL adsorption of two polyelectrolyte pairs: 1) poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) and 2) poly(L-lysine hydrobromide) (PLL) and dextran sulfate (DES). It is demonstrated that both PAH/PSS and PLL/DES coatings suppress the burst release usually observed for unmodified PLGA nanoparticles and that the release behavior can be adjusted by changing the layer numbers, layer materials, or by crosslinking the layer constituents. Neither bare nor polyelectrolyte-modified PLGA nanoparticles show any signs of cytotoxicity. However, nanoparticles with a positively charged polyelectrolyte as the outermost layer induce hemolysis, whereas uncoated particles or particles with a negatively charged polyelectrolyte as the outermost layer show no hemolytic activity. Furthermore, particles with either PAH or PLL as the outermost layer also demonstrate a higher uptake efficiency by L929 fibroblast cells, due to a higher cell-particle affinity. This study suggests that LbL coating of PLGA nanoparticles can control the release behavior of bioactive molecules as well as the surface activity, therefore providing a promising strategy to enhance the efficiency of nanoparticulate drug-delivery systems.


Biomacromolecules | 2013

Layer-by-layer polyelectrolyte-polyester hybrid microcapsules for encapsulation and delivery of hydrophobic drugs.

Rongcong Luo; Subbu S. Venkatraman; Björn Neu

A two-step process is developed to form layer-by-layer (LbL) polyelectrolyte microcapsules, which are able to encapsulate and deliver hydrophobic drugs. Spherical porous calcium carbonate (CaCO3) microparticles were used as templates and coated with a poly(lactic acid-co-glycolic acid) (PLGA) layer containing hydrophobic compounds via an in situ precipitation gelling process. PLGA layers that precipitated from N-methyl-2-pyrrolidone (NMP) had a lower loading and smoother surface than those precipitated from acetone. The difference may be due to different viscosities and solvent exchange dynamics. In the second step, the successful coating of multilayer polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) onto the PLGA coated CaCO3 microparticles was confirmed with AFM and ζ-potential studies. The release of a model hydrophobic drug, ibuprofen, from these hybrid microcapsules with different numbers of PAH/PSS layers was investigated. It was found that the release of ibuprofen decreases with increasing layer numbers demonstrating the possibility to control the release of ibuprofen with these novel hybrid microcapsules. Besides loading of hydrophobic drugs, the interior of these microcapsules can also be loaded with hydrophilic compounds and functional nanoparticles as demonstrated by loading with Fe3O4 nanoparticles, forming magnetically responsive dual drug releasing carriers.


IEEE Journal of Selected Topics in Quantum Electronics | 2012

Chitosan-Coated Polarization Maintaining Fiber-Based Sagnac Interferometer for Relative Humidity Measurement

Li Han Chen; Chi Chiu Chan; Tao Li; Mutukumaraswamy Shaillender; Björn Neu; Papusamy Balamurali; Rahul Menon; Peng Zu; Xiu Min Ang; Wei Chang Wong; Chueh Loo Poh; Kam Chew Leong

A relative humidity fiber sensor based on polarization maintaining (PM) fiber Sagnac interferometery configuration is presented. The proposed sensor is functionalized with a thin layer of a moisture-sensitive natural polymer chitosan, whose degree of swelling varies as a function of relative humidity. The sensing scheme used in this study is based on the strain effect induced on the PM fiber to modulate its birefringence property through the swelling effect of chitosan. To optimize the sensors response, the experiments were first conducted to evaluate the effect of chitosan concentration on the PM fiber, followed by investigating effects of chemically etched PM fiber and analyzing modified chitosan sensing film effect on the sensors performance. As observed from the results, the optimized sensor exhibits a sensitivity of 81 pm/%RH for the relative humidity ranging from 20% RH to 95% RH with an uncertainty of ±2.04% RH.


International Journal of Pharmaceutics | 2011

Layer-by-layer microcapsules templated on erythrocyte ghost carriers

Mutukumaraswamy Shaillender; Rongcong Luo; Subbu S. Venkatraman; Björn Neu

This work reports the fabrication of layer-by-layer (LbL) microcapsules that provide a simple mean for controlling the burst and subsequent release of bioactive agents. Red blood cell (RBC) ghosts were loaded with fluorescently labeled dextran and lysozyme as model compounds via hypotonic dialysis with an encapsulation efficiency of 27-31%. It is demonstrated that these vesicles maintain their shape and integrity and that a uniform distribution of the encapsulated agents within these carriers is achieved. The loaded vesicles were then successfully coated with the biocompatible polyelectrolytes, poly-L-arginine hydrochloride and dextran sulfate. It is demonstrated that the release profiles of the encapsulated molecules can be regulated over a wide range by adjusting the number of polyelectrolyte layers. In addition, the LbL shell also protects the RBC ghost from decomposition thereby potentially preserving the bioactivity of encapsulated drugs or proteins. These microcapsules, consisting of an RBC ghost coated with a polyelectrolyte multilayer, provide a simple mean for the preparation of loaded LbL microcapsules eliminating the core dissolution and post-loading of bioactive agents, which are required for conventional LbL microcapsules.

Collaboration


Dive into the Björn Neu's collaboration.

Top Co-Authors

Avatar

Herbert J. Meiselman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Subbu S. Venkatraman

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chi Chiu Chan

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Li Han Chen

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Peng Zu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Rongcong Luo

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Wei Chang Wong

Nanyang Technological University

View shared research outputs
Researchain Logo
Decentralizing Knowledge