Björn Öhlander
Luleå University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Björn Öhlander.
Chemical Geology | 2000
Johan Ingri; Anders Widerlund; Magnus Land; Örjan Gustafsson; Per Andersson; Björn Öhlander
Rare earth element (REE) data from weekly sampling of the filtered (<0.45 μm) and suspended particulate phase during 18 months in the Kalix River, Northern Sweden, are presented together with data on colloidal particles and the solution fraction (<3 kDa). The filtered REE concentration show large seasonal and temporal variations in the river. Lanthanum varied between approximately 300 and 2100 pM. High REE concentration in the filter-passing fraction is related to increased water discharge and there is a strong correlation between the REE concentration, organic carbon, Al and Fe. Physical erosion of detrital particles plays a minor role for the yearly transport of particulate REE in this boreal river system. The suspended particulate fraction, which is dominated by non-detrital fractions, accounted for only 35% of the yearly total transport of La in the river. Approximately 10% of the REE were transported in detrital particles during winter. At spring-flood in May, about 30% of the LREE and up to 60% of the HREE where hosted in detrital particles. Ultrafiltration of river water during spring-flood shows that colloidal particles dominate the transport of filter-passing REE. Less than 5% of the filtered REE are found in the fraction smaller than 3 kDa. The colloidal fraction shows a flat to slightly LREE enriched pattern whereas the solution fraction (<3 kDa) show an HREE enriched pattern, compared with till in the catchment. Suspended particles show a LREE enriched pattern. Data indicate that the REE are associated with two phases in the colloidal (and particulate) fraction, an organic-rich phase (with associated Al–Fe) and an Fe-rich (Fe–oxyhydroxide) inorganic phase. The Ce-anomaly in the suspended particulate fraction in the river shows systematic variations, and can be used to interpret fractionation processes of the REE during weathering and transport. There was no anomaly at maximum spring-flood but during the ice-covered period the anomaly became more and more negative. The temporal and seasonal variations of the Ce-anomaly in the suspended particulate phase reflect transport of REE–C–Al–Fe-enriched colloids from the upper section of the till (and/or from mires) to the river at storm events.
Chemical Geology | 1999
Magnus Land; Björn Öhlander; Johan Ingri; Jonas Thunberg
A sequential extraction has been carried out on seven soil samples from a spodosol profile in till with granitic composition. The soil profile was sampled in northern Sweden. Five fractions were selected for extraction: (A) CH_3COONa-extractable (exchangeable/adsorbed/carbonate); (B) Na_4P_2O_7-extractable (labile organics); (C) 0.25 M NH_2OH⋅HCl-extractable (amorphous Fe-oxyhydroxides/Mn-oxides); (D) 1 M NH_2OH⋅HCl-extractable (crystalline Fe-oxides); and (E) KClO_3/HCl-extractable (organics and sulphides). Extracted rare earth elements (REE) were determined with High Resolution ICP-MS. In addition to the soil, stream water suspended particulate matter was also analysed for REE. Total concentrations in the soil samples show that the REE have been fractionated during weathering. In the acidic (pH 4.28) E-horizon all REE are depleted relative to the unweathered till. The depletion decreases with increasing atomic number. Also in the B-horizon (pH 5.86) the REE are depleted, although to a lesser extent compared to the E-horizon. Secondary phases in the B-horizon fractionate the REE in different ways. Rare earth elements extracted in extractions A and C were enriched in the intermediate REE relative to heavy and light REE if normalized to local till. In extractions B and D, the heavy REE were enriched relative to the light REE, and in extraction E a large enrichment of light REE relative to heavy REE was found. Stream water suspended particulate matter is enriched in all REE relative to local till. The light REE are more enriched than the heavy REE. Normalized La/Lu ratios in the suspended matter ranged from 1.5 to 2.4, and were negatively correlated with stream water discharge as well as with content of detrital inorganic matter in the suspended load. The only extracted phase that potentially can explain the high normalized La/Lu ratio in the suspended matter is the phase extracted in extraction E, which has a ratio of 2.0–4.2. The normalized La/Lu ratio for the rest of the extractions ranged from 0.5 to 1.2. It is concluded that organic matter seems to be important for the particulate transport of REE in northern coniferous areas.
Applied Geochemistry | 1996
Björn Öhlander; Magnus Land; Johan Ingri; Anders Widerlund
Abstract Continuous, volume-controlled sampling from the surface down to a depth of 130 cm was conducted at two stations on weathered till (typic haplocryods). All the samples were analysed for major and trace elements including the rare earth elements (REE). Eight thousand seven hundred years of weathering since the glacial ice left the area, has resulted in a strong depletion of REE in the E-horizon. This loss decreases as atomic number increases, so that 80–85% of the La and 54–60% of the Yb have been lost. Europium has been lost to a greater degree than have the neighbouring elements. Possible explanations for the release of REE are: weathering of common silicates such as hornblende and epidote (and plagioclase in the case of Eu); weathering of apatite; weathering of rare but REE-rich minerals such as allanite and monazite; and release of REE adsorbed on clay minerals. Further studies on various size fractions and minerals are needed to quantify the importance of the various possible mechanisms of REE release. The release of REE continues within and below the Bs1-horizon, but the results from one station show that light REE can be enriched in the Bs1-horizon. This secondary enrichment could be caused by adsorption on secondary oxy-hydroxides, on clay minerals or on organic material. However, the net result of the weathering is that all REE have been released to the groundwater.
Journal of Analytical Atomic Spectrometry | 2003
Dmitry Malinovsky; Anna Stenberg; Ilia Rodushkin; Henrik Andrén; Johan Ingri; Björn Öhlander; Douglas C. Baxter
High resolution MC-ICP-MS is used for the precise measurement of variations in the isotopic composition of Fe in ferromanganese concretions and sediments relative to IRMM-014 standard. The sensitivity for 56Fe in high resolution mode was 3 V per mg l−1 Fe, a figure that is comparable to those from other MC-ICP-MS instruments operated at low resolution. Incorporation of a guard electrode and the efficient ion transmission capabilities of the Neptune MC-ICP-MS instrument are responsible for the high sensitivity. It was observed that the use of HCl resulted in the formation of ClOH+, causing interference with 54Fe in particular. This acid has been preferred in some cases over HNO3 to minimize formation of ArN+, the major interferent for 54Fe. Using the high resolution mode of the Neptune, the nature of spectral interferences is unimportant as all are completely resolved and will not affect the accuracy of the determined Fe isotope ratios. As the instrument also provides flat-topped peaks, high resolution operation does not necessarily result in impaired precision, providing that higher concentrations are used to compensate for the loss in sensitivity compared with the low resolution mode. In the present work, external reproducibilities of 56Fe/54Fe and 57Fe/54Fe isotope ratios were better than 50 ppm (one standard deviation) at a concentration of 5 mg l−1. The level of instrumental mass discrimination observed for raw ratios drifted by as much as 0.09% per mass unit over a measurement session, but could be corrected on-line by simultaneous monitoring of the 62Ni/60Ni isotope ratio. Variations in the Fe concentrations or the acid strength of measurement solutions were found to affect the apparent mass discrimination. Increasing the Fe concentration caused a relative decrease in the raw 56Fe/54Fe and 57Fe/54Fe isotope ratios, thus ruling out the space charge effect as the explanation for this phenomenon. Instead, it is suggested that the larger dry aerosol particles formed at higher Fe concentrations are not completely vaporized until later in the plasma, thus reducing the relative rate of diffusional losses of lighter 54Fe from the central channel. However, application of on-line correction using Ni could adequately account for this effect. From the results for a variety of sedimentary geological materials, analysis of three-isotope data revealed that equilibrium fractionation of Fe occurred during deposition. To be able to distinguish between equilibrium and kinetic fractionation processes, it is imperative to collect accurate and precise data for the 56Fe/54Fe and 57Fe/54Fe isotope ratios. These requirements are readily fulfilled by applying high resolution MC-ICP-MS and on-line correction for instrumental mass discrimination using Ni.
Precambrian Research | 1993
Torbjörn Skiöld; Björn Öhlander; Heikki Markkula; Lennart Widenfalk; Lars-åke Claesson
Abstract The Proterozoic Svecofennian orogeny was characterized by the rapid formation of great amounts of juvenile continental crust and extensive remobilization of older crust. This paper considers UPb zircon ages and some geochemical and lithostratigraphic features of the Svecofennian in the continental-margin area between the Skellefte ore district and the boundary of the Archaean craton farther north in Sweden. New UPb zircon ages constrain the igneous activity of Svecofennian crust formation in northern Sweden to between 1930 and 1870 Ma ago. The same time constraints apply also to crust formation farther east in Finland. Orogeny along the entire Archaean-Proterozoic boundary zone was thus simultaneous and does not represent an east-to-west event succession. It is argued that rocks with similar major element compositions but distinctly different trace element characteristics were formed simultaneously but in different plate-tectonic environments. By ∼ 1875 Ma ago, the Svecofennian volcanic arc had matured and a variety of syn- to late-orogenic igneous rocks appeared in both tensional and compressional settings. Shortly thereafter, the Svecofennian magmatic activity ceased altogether, probably as a result of collision between the arc and the Archaean continent in the north. It is also suggested that pre-Svecofennian rifting of the Archaean craton had created a passive continental margin and that the transition to an active margin with subsequent island-arc magmatism and subduction beneath the Archaean craton commenced prior to 1930 Ma ago. It may well have been initiated by a relative drift of the Archaean craton towards the present southwest as a consequence of the formation of the collisional Proterozoic Lapland Granulite Belt in the northernmost Baltic Shield.
Precambrian Research | 1993
Björn Öhlander; Torbjörn Skiöld; Sten-Åke Elming; Stefan Claesson; Dan Nisca
Abstract Before the deposition of a Proterozoic cover and the repeated Proterozoic reworking of the older rocks, the presently exposed Archaean areas in northern Sweden formed part of a coherent craton. In the present study, we have used SmNd isotopic analyses of Proterozoic granitoids and metavolcanics to delineate the Archaean palaeoboundary. In a regional context, the transition from strongly negative ϵ Nd( t ) values in the northeast to positive values in the southwest is distinct, and approximately defines the border of the old craton. The Archaean palaeoboundary extends in a WNW direction, and is subparallel to the longitudinal axis of the Skellefte sulphide ore district but it is situated ∼ 100 km farther to the north. The ∼ 1.9 Ga old granitoids on the two sides of the palaeoboundary were all formed in compressional environments, but those situated to the north have higher contents of LILE and LREE at similar contents of Si. This indicates that they were generated in an area with thicker crust and supports the location of the Archaean-Proterozoic palaeoboundary. There is no simple correlation between the Archaean palaeoboundary, as defined by the isotopic results, and any of the major fracture systems as interpreted from regional geophysical measurements. Reflection seismic work indicates that juvenile volcanic-arc terrains to the south have been thrust onto the Archaean craton. Possible thrust faults have been identified from aeromagnetic measurements. Rifting of the Archaean craton created a passive margin ∼ 2.0 Ga ago. Spreading shifted to convergence with subduction beneath the Archaean continent ∼ 1.9 Ga ago. Subsequently, the resulting juvenile volcanic arc collided with the old continent, and the Archaean palaeoboundary as existing today was formed by a collision characterized by overthrusting. The boundary then was disturbed by later deformation predominantly along NNE-trending fracture systems.
Analyst | 2002
Mikael D. Axelsson; Ilia Rodushkin; Johan Ingri; Björn Öhlander
Two acid digestion procedures (microwave-assisted and room temperature) were developed for the quantitative analysis of ferromanganese nodules by inductively coupled plasma double focusing sector field mass spectrometry (ICP-SFMS). Different compositions of the acid mixture, dilution factors and corrections for spectral interferences were tested. A combination of nitric, hydrochloric and hydrofluoric acids is necessary for complete sample digestion, with lowest acid to sample ratios (v/m) of 15 and 1.5, respectively, for the last two acids. Sample dilution factors higher than 2 x 10(4) should be used in order to decrease matrix effects and provide robust long-term instrumental operation. In spite of high dilution, method detection limits in the sub-microg g(-1) range were obtained for 54 out of 71 elements tested, due to the high detection capability of ICP-SFMS, as well as the special care taken to ensure the purity of reagents, to clean the instrument sample introduction system and to minimise sample handling. Owing to the presence of unresolved (at the resolution available) spectral interferences, accurate determination of Au, Hg, Os, Pd, Re and Rh is impossible without matrix separation. The accuracy of the entire analytical method was tested by the analysis of two nodule reference materials. The results generated agreed to within +/-2% for about 10, within +/-10% for more than 40 and within +/-20% for about 50 of 53 elements for which certified, recommended or literature values are available. A precision better than 3%, expressed as the between-digestion relative standard deviation (n = 4), was obtained for the majority of elements, except in cases limited by low analyte concentrations.
Science of The Total Environment | 2001
Henning Holmström; Ursula J Salmon; Erik Carlsson; Paraskev Petrov; Björn Öhlander
In the Kristineberg mining area in northern Sweden, massive, pyrite-rich Zn Cu ores are intercalated in ca. 1.9 Ga volcano-sedimentary rocks. Investigations of a tailings impoundment remediated by means of both till coverage and raising the groundwater table have been undertaken. The aim of the study was to characterise the tailings with respect to mineralogy, the chemical composition of both the tailings and the pore water, and to try to identify the significant reactions that may have occurred before and after remediation. It was found that the oxidation front had reached down to depths of between approximately 0.1 and 1.15 m before remediation. The oxidation of sulfides has produced high concentrations of some metals in the pore water; up to 26, 16, 4.1, 2.7 and 82 mg/l have been measured for Al, Mn, Fe and Zn, respectively. Concentrations of metals such as Cd, Co, Cu, Ni and Pb are lower, with average concentrations of 18.4, 83.8, 45, 79.6 and 451 microg/l, respectively. Higher concentrations of major elements such as Ca, Fe, Mn, Mg and S have been measured at depth in pore water than at shallower levels. This is probably caused by flush out of elements after remediation and vertical transport from the upper parts before remediation. The pH is relatively high, approximately 5.5 at most depths in the tailings, except in and around the former oxidation zone where it is lower, and where the highest dissolved concentrations of elements such as As, Cd, Co, Cu, Pb and Zn occur. This is probably due to the release of metals secondarily retained below the oxidation front prior to the remediation. Since the groundwater table is raised, the groundwater reaches the retained metals, which leads to desorption of metals and dissolution of secondary minerals.
Geochimica et Cosmochimica Acta | 2000
Björn Öhlander; Johan Ingri; Magnus Land; Hans Schöberg
Weathering of till in northern Sweden results in the formation of well-developed spodosols. The till is dominated by 1.9–1.8 Ga granitic material. The REE are among the elements most strongly depleted during weathering, and the loss of REE from the E-horizon decreases as the atomic number increases. To study if weathering leads to a change of the Nd isotope composition, we have analysed the Nd isotopic composition of the various horizons including living plants and humus of two profiles of weathered till (typic haplocryods) in northern Sweden. As much as between 65.6 and 75.3% of the Sm and Nd in the <0.2 mm fraction has been lost from the E-horizon, and between 32.5 and 54.7% from the B-horizon. Nd has been lost to a slightly greater extent than Sm. The two C-horizon samples have eNd(0) values of −22.1 and −23.2. Corresponding E-horizon values are −18.1 and −20.2. The B-horizon values are intermediate between the values of the E and C horizons. It is concluded that the weathering leads to a change in the Sm/Nd ratio resulting in a change of the Sm-Nd isotope composition. The plant and humus samples deviate even more from the unweathered till. For one station the results could be interpreted as if the Sm and Nd taken up by the plants had similar isotope characteristics as the amounts of these elements released by weathering in the E-horizon. For the other station it is probable that the Nd isotope composition of the organic samples is dominated by Nd released by till weathering which, however, is mixed with another Nd-source, possibly an airborne component. The explanation to the change of isotope compostion in the till is that a larger proportion of the Nd released by weathering is released from minerals with a lower Sm/Nd ratio than the bulk soil, compared with the amount released from minerals with a higher Sm/Nd ratio. Although the various REE-carrying minerals had the same initial Nd isotopic composition, 1.8–1.9 Ga of decay of 147Sm to 143Nd has resulted in a higher present 143Nd/144Nd ratio in the minerals with a higher Sm/Nd ratio.
Applied Geochemistry | 1999
Magnus Land; Johan Ingri; Björn Öhlander
Past and present chemical weathering rates in granitic till have been estimated. The Kalix River watershed in northern Sweden was used as a study area in which 17 evenly distributed soil profiles were investigated. The two estimations are based on elemental depletion trends in soil profiles and input/output budgets for the elements in the watershed, respectively. In the calculations of the past weathering rate it was assumed that zircon is resistant, and thus Zr was considered to be immobile during weathering. The long-term average chemical erosion rate since the area was deglaciated 8700 a ago, expressed as the sum of major element oxides (SiO2, Al2O3, CaO, Fe2O3, K2O, MgO, MnO, Na2O), was estimated to be 5.8 g·m−2·a−1. In terms of base cation (Ca2+, Mg2+, Na+, K+) depletion this corresponds to 0.36 keq·ha−2·a−1. All elements analysed have been depleted from the E-horizon, and the most affected elements are P with an average mass loss of 86% (as P2O5), La 81%, Co 78%, Cu 77% and Ni 76%. The present-day weathering rate was calculated as the difference between outputs and inputs in the Kalix River watershed. The input was considered as the contribution from precipitation, while the output was calculated as the sum of (1) the river-transported dissolved fraction, (2) the river-transported suspended non-detrital fraction (chemically precipitated Fe- and Mn-oxy-hydroxides and matter sorbed on these particles), and (3) the biotic nutrient net uptake. River-transported outputs were measured for an annual cycle starting in September 1991 and ending in August 1992. The present-day chemical erosion rate of the till was estimated to be 6.3 g·m−2·a−1 (sum of major element oxides), or a base cation flux of 1.42 keq·ha−2·a−1. Part of this present-day rate is related to carbonate weathering in the Caledonian mountain range which makes it difficult to compare the present weathering rate with the historical weathering rate. After correction for carbonate weathering the resulting present-day weathering rate of granitic till in terms of base cation flux was estimated to be 0.65–0.75 keq·ha−2·a−1. This result indicates that the present cation flux has increased by a factor of 1.8–2.1 compared to the long-term average. However, given the uncertainties introduced by the carbonates in the Caledonian mountain range it is not possible to prove any significant difference between the mean post-glacial and the present-day weathering rate with the methods used in this study.