Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Olde is active.

Publication


Featured researches published by Björn Olde.


Biochemical and Biophysical Research Communications | 2003

Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids.

Niclas E. Nilsson; Knut Kotarsky; Christer Owman; Björn Olde

Short-chain fatty acids (SCFAs) have long been known to exert cellular effects on blood leukocytes. Acetate, propionate, and butyrate represent the most capable SCFA, inducing calcium mobilization which subsequently regulates leukocyte function in the immune system. We have cloned the previously described putative orphan G-protein coupled receptor, GPR43, and have functionally identified SCFA as the activating ligands. Acetate and propionate were found to be the two most potent ligands, although butyrate, formate, and valerate (in this order of potency) also were able to induce receptor activation. Both the human and mouse receptor homologues were found to share the same pattern of ligand activation. This finding, together with a high degree of amino acid sequence similarity between the mouse and human homologues, indicates an evolutionary conserved function. Upon ligand stimulation, the receptor mobilized intracellular calcium in both a recombinant system as well as in human granulocytes. We found the human gene to be predominantly expressed in peripheral blood leukocytes and, to a lesser extent, in spleen. We suggest the designation FFA(2)R to this second receptor activated by free fatty acids. The first-described FFAR, now named FFA(1)R, is activated by medium- to long-chain free fatty acids.


Endocrinology | 2009

Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice.

Ulrika E.A. Mårtensson; S Albert Salehi; Sara H. Windahl; Maria F. Gomez; Karl Swärd; Joanna Daszkiewicz-Nilsson; A. Wendt; Niklas Andersson; Per Hellstrand; Per-Olof Grände; Christer Owman; Clifford J. Rosen; Martin L. Adamo; Ingmar Lundquist; Patrik Rorsman; Bengt-Olof Nilsson; Claes Ohlsson; Björn Olde; L. M. Fredrik Leeb-Lundberg

In vitro studies suggest that the G protein-coupled receptor (GPR) 30 is a functional estrogen receptor. However, the physiological role of GPR30 in vivo is unknown, and it remains to be determined whether GPR30 is an estrogen receptor also in vivo. To this end, we studied the effects of disrupting the GPR30 gene in female and male mice. Female GPR30((-/-)) mice had hyperglycemia and impaired glucose tolerance, reduced body growth, increased blood pressure, and reduced serum IGF-I levels. The reduced growth correlated with a proportional decrease in skeletal development. The elevated blood pressure was associated with an increased vascular resistance manifested as an increased media to lumen ratio of the resistance arteries. The hyperglycemia and impaired glucose tolerance in vivo were associated with decreased insulin expression and release in vivo and in vitro in isolated pancreatic islets. GPR30 is expressed in islets, and GPR30 deletion abolished estradiol-stimulated insulin release both in vivo in ovariectomized adult mice and in vitro in isolated islets. Our findings show that GPR30 is important for several metabolic functions in female mice, including estradiol-stimulated insulin release.


Journal of Pharmacology and Experimental Therapeutics | 2006

Lysophosphatidic Acid Binds to and Activates GPR92, a G Protein-Coupled Receptor Highly Expressed in Gastrointestinal Lymphocytes

Knut Kotarsky; Åke Boketoft; Jesper Bristulf; Niclas E. Nilsson; Åke Norberg; Stefan Hansson; Rannar Sillard; Christer Owman; Fredrik Leeb-Lundberg; Björn Olde

Here, the ligand binding, activation, and tissue distribution of the orphan G protein-coupled receptor (GPCR) GPR92 were studied. GPR92 binds and is activated by compounds based on the lysophosphatidic acid (LPA) backbone. The binding of LPA to GPR92 was of high affinity (KD = 6.4 ± 0.9 nM) and led to an increase in both phosphoinositide hydrolysis and cAMP production. GPR92 is atypical in that it has a low sequence homology with the classic LPA1-3 receptors (21-22%). Expression of GPR92 is mainly found in heart, placenta, spleen, brain, lung, and gut. Notably, GPR92 is highly expressed in the lymphocyte compartment of the gastrointestinal tract. It is the most abundant GPCR activated by LPA found in the small intestinal intraepithelial CD8+ cytotoxic T cells.


Trends in Endocrinology and Metabolism | 2009

GPR30/GPER1: searching for a role in estrogen physiology

Björn Olde; L. M. Fredrik Leeb-Lundberg

Estrogens are sex hormones that are central to health and disease in both genders. These hormones have long been recognized to act in complex ways, both through relatively slow genomic mechanisms and via fast non-genomic mechanisms. Several recent in vitro studies suggest that GPR30, or G protein-coupled estrogen receptor 1 (GPER1), is a functional membrane estrogen receptor involved in non-genomic estrogen signaling. However, this function is not universally accepted. Studies concerning the role of GPER1 in vivo are now beginning to appear but with divergent results. In this review we discuss current knowledge on the physiological role of GPER1 in the nervous system as well as in reproduction, metabolism, bone, and in the cardiovascular and immune systems.


Blood | 2013

Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression

Olof Gidlöf; Marcel van der Brug; Jenny Öhman; Patrik Gilje; Björn Olde; Claes Wahlestedt; David Erlinge

Platelets play a crucial role in the pathogenesis of myocardial infarction (MI) by adhering to the site of a ruptured atherosclerotic plaque. The aim of this study was to screen for differences in the micro RNA (miRNA) content of platelets from patients with myocardial infarction and control patients, to investigate a possible release of miRNAs from activated platelets and to elucidate whether platelet-derived miRNAs could act as paracrine regulators of endothelial cell gene expression. Using RNA-seq, we found 9 differentially expressed miRNAs in patients compared with healthy controls, of which 8 were decreased in patients. Of these, miR-22, -185, -320b, and -423-5p increased in the supernatant of platelets after aggregation and were depleted in thrombi aspirated from MI patients, indicating the release of certain miRNAs from activated platelets. To confirm that endothelial cells could take up the released platelet miRNAs, transfer of both fluorescently labeled miRNA and exogenous cel-miR-39 from activated platelets to endothelial cells was shown. Finally, a possible paracrine role of released platelet miR-320b on endothelial cell intercellular adhesion molecule-1 expression was shown. Thus, platelets from patients with MI exhibit loss of specific miRNAs, and activated platelets shed miRNAs that can regulate endothelial cell gene expression.


American Journal of Physiology-endocrinology and Metabolism | 2009

The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice

Sara H. Windahl; Niklas Andersson; Andrei S. Chagin; Ulrika E.A. Mårtensson; Hans Carlsten; Björn Olde; Charlotte Swanson; Sofia Movérare-Skrtic; Lars Sävendahl; Marie K Lagerquist; L. M. F. Leeb-Lundberg; Claes Ohlsson

In vitro studies suggest that the membrane G protein-coupled receptor GPR30 is a functional estrogen receptor (ER). The aim of the present study was to determine the possible in vivo role of GPR30 as a functional ER primarily for the regulation of skeletal parameters, including bone mass and longitudinal bone growth, but also for some other well-known estrogen-regulated parameters, including uterine weight, thymus weight, and fat mass. Three-month-old ovariectomized (OVX) GPR30-deficient mice (GPR30(-/-)) and wild-type (WT) mice were treated with either vehicle or increasing doses of estradiol (E(2); 0, 30, 70, 160, or 830 ng.mouse(-1).day(-1)). Body composition [bone mineral density (BMD), fat mass, and lean mass] was analyzed by dual-energy-X ray absorptiometry, while the cortical and trabecular bone compartments were analyzed by peripheral quantitative computerized tomography. Quantitative histological analyses were performed in the distal femur growth plate. Bone marrow cellularity and distribution were analyzed using a fluorescence-activated cell sorter. The estrogenic responses on most of the investigated parameters, including increase in bone mass (total body BMD, spine BMD, trabecular BMD, and cortical bone thickness), increase in uterine weight, thymic atrophy, fat mass reduction, and increase in bone marrow cellularity, were similar for all of the investigated E(2) doses in WT and GPR30(-/-) mice. On the other hand, E(2) treatment reduced longitudinal bone growth, reflected by decreased femur length and distal femur growth plate height, in the WT mice but not in the GPR30(-/-) mice compared with vehicle-treated mice. These in vivo findings demonstrate that GPR30 is not required for normal estrogenic responses on several major well-known estrogen-regulated parameters. In contrast, GPR30 is required for a normal estrogenic response in the growth plate.


Journal of Virology | 2004

Coevolution of RANTES sensitivity and mode of CCR5 receptor use by human immunodeficiency virus type 1 of the R5 phenotype.

Ingrid Karlsson; Liselotte Antonsson; Yu Shi; Monica Öberg; Anders Karlsson; Jan Albert; Björn Olde; Christer Owman; Marianne Jansson; Eva Maria Fenyö

ABSTRACT The evolution of human immunodeficiency virus type 1 (HIV-1) coreceptor use has been described as the acquisition of CXCR4 use linked to accelerated disease progression. However, CXCR4-using virus can be isolated only from approximately one-half of individuals with progressive HIV-1 disease. The other half continue to yield only CCR5-using viruses (R5 phenotype) throughout the course of disease. In the present work, the use of receptor chimeras between CCR5 and CXCR4 allowed us to study the evolution of HIV-1 with the R5 phenotype, which was not revealed by studies of wild-type coreceptor use. All together, 246 isolates (173 with the R5 phenotype) from 31 individuals were tested for their ability to infect cells through receptor chimeras. R5narrow virus was able to use only wild-type CCR5, whereas R5broad(1) to R5broad(3) viruses were able to use one to three chimeric receptors, respectively. Broad use of chimeric receptors was interpreted as an increased flexibility in the mode of receptor use. R5broad isolates showed higher infectivity in cells expressing wild-type CCR5 than R5narrow isolates. Also, the increased flexibility of R5broad isolates was concomitant with a lower sensitivity to inhibition by the CC chemokine RANTES. Our results indicate a close relationship between HIV-1 phenotypic changes and the pathogenic process, since the mode and efficiency of CCR5 use as well as the decrease in the RANTES sensitivities of isolated viruses are significantly correlated with CD4+-T-cell decline in a patient. One possible explanation is that ligand competition at the CCR5 receptor or changed CCR5 availability may shape the outcome of HIV-1 infection.


Molecular Pharmacology | 2011

G Protein-Coupled Estrogen Receptor 1 (GPER1)/GPR30 Localizes in the Plasma Membrane and Trafficks Intracellularly on Cytokeratin Intermediate Filaments.

Caroline Sandén; Stefan Broselid; Louise Cornmark; Krister Andersson; Joanna Daszkiewicz-Nilsson; Ulrika E.A. Mårtensson; Björn Olde; L. M. Fredrik Leeb-Lundberg

G protein-coupled receptor 30 [G protein-coupled estrogen receptor 1 (GPER1)], has been introduced as a membrane estrogen receptor and a candidate cancer biomarker and therapeutic target. However, several questions surround the subcellular localization and signaling of this receptor. In native cells, including mouse myoblast C2C12 cells, Madin-Darby canine kidney epithelial cells, and human ductal breast epithelial tumor T47-D cells, G-1, a GPER1 agonist, and 17β-estradiol stimulated GPER1-dependent cAMP production, a defined plasma membrane (PM) event, and recruitment of β-arrestin2 to the PM. Staining of fixed and live cells showed that GPER1 was localized both in the PM and on intracellular structures. One such intracellular structure was identified as cytokeratin (CK) intermediate filaments, including those composed of CK7 and CK8, but apparently not endoplasmic reticulum, Golgi, or microtubules. Reciprocal coimmunoprecipitation of GPER1 and CKs confirmed an association of these proteins. Live staining also showed that the PM receptors constitutively internalize apparently to reach CK filaments. Receptor localization was supported using FLAG- and hemagglutinin-tagged GPER1. We conclude that GPER1-mediated stimulation of cAMP production and β-arrestin2 recruitment occur in the PM. Furthermore, the PM receptors constitutively internalize and localize intracellularly on CK. This is the first observation that a G protein-coupled receptor is capable of associating with intermediate filaments, which may be important for GPER1 regulation in epithelial cells and the relationship of this receptor to cancer.


Journal of Vascular Research | 2011

The GPER1 Agonist G-1 Attenuates Endothelial Cell Proliferation by Inhibiting DNA Synthesis and Accumulating Cells in the S and G2 Phases of the Cell Cycle

Anders Holm; Bo Baldetorp; Björn Olde; L. M. Fredrik Leeb-Lundberg; Bengt-Olof Nilsson

G protein-coupled receptor 30 (GPR30) or G protein-coupled estrogen receptor 1 (GPER1) is expressed in the vasculature, but the importance of vascular GPER1 remains to be clarified. Here we investigate effects of the GPER1 agonist G-1 on endothelial cell proliferation using mouse microvascular endothelial bEnd.3 cells. The bEnd.3 cells express mRNA for GPER1. The bEnd.3 cells expressed both ERα and ERβ immunoreactivities. Treatment with G-1 reduced DNA synthesis and cell number with IC50 values of about 2 µM. GPER1 siRNA prevented G-1-induced attenuation of DNA synthesis. G-1 accumulated cells in S and G2 phases of the cell cycle, suggesting that G-1 blocks transition between G2 and M. G-1 had no effect on DNA synthesis in COS-7 cells only weakly expressing GPER1 mRNA. 17β-Estradiol had no effect on DNA synthesis in physiological concentrations (nM). The ER blocker ICI182780 reduced DNA synthesis with similar potency as G-1. Treatment with the ERK/MAP kinase inhibitor PD98059 had no effect on G-1-induced attenuation of DNA synthesis. G-1- induced antiproliferation was observed not only in bEnd.3 cells but also in human umbilical vein endothelial cells and HMEC-1 endothelial cells. We conclude that the GPER1 agonist G-1 attenuates endothelial cell proliferation via inhibition of DNA synthesis and by accumulation of cells in S and G2.


British Journal of Pharmacology | 2011

G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling

Bengt-Olof Nilsson; Björn Olde; L. M. Fredrik Leeb-Lundberg

Oestrogens are important sex hormones central to health and disease in both genders that have protective effects on the cardiovascular and metabolic systems. These hormones act in complex ways via both genomic and non‐genomic mechanisms. The genomic mechanisms are relatively well characterized, whereas the non‐genomic ones are only beginning to be explored. Two oestrogen receptors (ER), ERα and ERβ, have been described that act as nuclear transcription factors but can also associate with the plasma membrane and influence cytosolic signalling. ERα has been shown to mediate both anti‐atherogenic effects and pro‐survival effects in pancreatic β‐cells. In recent years, a third membrane‐bound ER has emerged, G protein‐coupled receptor 30 or G protein‐coupled oestrogen receptor 1 (GPER1), which mediates oestrogenic responses in cardiovascular and metabolic regulation. Both GPER1 knock‐out models and pharmacological agents are now available to study GPER1 function. These tools have revealed that GPER1 activation may have several beneficial effects in the cardiovascular system including vasorelaxation, inhibition of smooth muscle cell proliferation, and protection of the myocardium against ischaemia/reperfusion injury, and in the metabolic system including stimulation of insulin release and protection against pancreatic β‐cell apoptosis. Thus, GPER1 is emerging as a candidate therapeutic target in both cardiovascular and metabolic disease.

Collaboration


Dive into the Björn Olde's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Stefani

University of California

View shared research outputs
Top Co-Authors

Avatar

Ligia Toro

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge