Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Björn Rasch is active.

Publication


Featured researches published by Björn Rasch.


Science | 2007

Odor cues during slow-wave sleep prompt declarative memory consolidation

Björn Rasch; Christian Büchel; Steffen Gais; Jan Born

Sleep facilitates memory consolidation. A widely held model assumes that this is because newly encoded memories undergo covert reactivation during sleep. We cued new memories in humans during sleep by presenting an odor that had been presented as context during prior learning, and so showed that reactivation indeed causes memory consolidation during sleep. Re-exposure to the odor during slow-wave sleep (SWS) improved the retention of hippocampus-dependent declarative memories but not of hippocampus-independent procedural memories. Odor re-exposure was ineffective during rapid eye movement sleep or wakefulness or when the odor had been omitted during prior learning. Concurring with these findings, functional magnetic resonance imaging revealed significant hippocampal activation in response to odor re-exposure during SWS.


The Neuroscientist | 2006

Sleep to Remember

Jan Born; Björn Rasch; Steffen Gais

Recently, compelling evidence has accumulated that links sleep to learning and memory. Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory. Consolidation is an active process that is presumed to rely on the covert reactivation and reorganization of newly encoded representations. Hippocampus-dependent memories benefit primarily from slow-wave sleep (SWS), whereas memories not depending on the hippocampus show greater gains over periods containing high amounts of rapid eye movement sleep. One way sleep does this is by establishing different patterns of neurotransmitters and neurohormone secretion between sleep stages. Another central role for consolidating memories is played by the slow oscillation, that is, the oscillating field potential change dominating SWS. The emergence of slow oscillations in neocortical networks depends on the prior use of these networks for encoding of information. Via efferent pathways, they synchronize the occurrence of sharp wave ripples accompanying memory reactivations in the hippocampus with thalamocortical spindle activity. Thus, hippocampal memories are fed back into neocortical networks at a time when these networks are depolarized and, because of concurrent spindle activity, can most sensitively react to these inputs with plastic changes underlying the formation of long-term memory representations.


Nature Neuroscience | 2011

Labile or stable: opposing consequences for memory when reactivated during waking and sleep

Susanne Diekelmann; Christian Büchel; Jan Born; Björn Rasch

Memory consolidation is a dynamic process. Reconsolidation theory assumes that reactivation during wakefulness transiently destabilizes memories, requiring them to reconsolidate in order to persist. Memory reactivation also occurs during slow-wave sleep (SWS) and is assumed to underlie the consolidating effect of sleep. Here, we tested whether the same principle of transient destabilization applies to memory reactivation during SWS. We reactivated memories in humans by presenting associated odor cues either during SWS or wakefulness. Reactivation was followed by an interference task to probe memory stability. As we expected, reactivation during waking destabilized memories. In contrast, reactivation during SWS immediately stabilized memories, thereby directly increasing their resistance to interference. Functional magnetic resonance imaging revealed that reactivation during SWS mainly activated hippocampal and posterior cortical regions, whereas reactivation during wakefulness primarily activated prefrontal cortical areas. Our results show that reactivation of memory serves distinct functions depending on the brain state of wakefulness or sleep.


Cognition | 2002

Returning the tables : Language affects spatial reasoning

Stephen C. Levinson; Sotaro Kita; Daniel B. M. Haun; Björn Rasch

Li and Gleitman (Turning the tables: language and spatial reasoning. Cognition, in press) seek to undermine a large-scale cross-cultural comparison of spatial language and cognition which claims to have demonstrated that language and conceptual coding in the spatial domain covary (see, for example, Space in language and cognition: explorations in linguistic diversity. Cambridge: Cambridge University Press, in press; Language 74 (1998) 557): the most plausible interpretation is that different languages induce distinct conceptual codings. Arguing against this, Li and Gleitman attempt to show that in an American student population they can obtain any of the relevant conceptual codings just by varying spatial cues, holding language constant. They then argue that our findings are better interpreted in terms of ecologically-induced distinct cognitive styles reflected in language. Linguistic coding, they argue, has no causal effects on non-linguistic thinking--it simply reflects antecedently existing conceptual distinctions. We here show that Li and Gleitman did not make a crucial distinction between frames of spatial reference relevant to our line of research. We report a series of experiments designed to show that they have, as a consequence, misinterpreted the results of their own experiments, which are in fact in line with our hypothesis. Their attempts to reinterpret the large cross-cultural study, and to enlist support from animal and infant studies, fail for the same reasons. We further try to discern exactly what theory drives their presumption that language can have no cognitive efficacy, and conclude that their position is undermined by a wide range of considerations.


Biological Psychiatry | 2006

Brief Sleep After Learning Keeps Emotional Memories Alive for Years

Ullrich Wagner; Manfred Hallschmid; Björn Rasch; Jan Born

BACKGROUND Sleep after learning supports memory consolidation. However, long-lasting memory effects of sleep have not yet been investigated. Postlearning sleep may be particularly involved in the long-term retention of emotional memories and could thereby contribute to the development of posttraumatic stress disorder (PTSD), a disease thought to result from overconsolidation of traumatic memories. METHODS Subjects (healthy men) who had learned neutral and emotional texts immediately before sleeping or remaining awake for the subsequent 3 hours were recontacted after 4 years for long-term memory assessment (forced-choice recognition test). RESULTS Sleep following learning compared with wakefulness enhanced memory for emotional texts after 4 years (p = .001). No such enhancement was observed for neutral texts (p = .571). CONCLUSIONS Brief periods of sleep immediately following learning cause preservation of emotional memories over several years. Sleep deprivation in the immediate aftermath of traumatic events could be a promising therapeutic measure to prevent PTSD.


Nature Neuroscience | 2009

Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory

Björn Rasch; Julian Pommer; Susanne Diekelmann; Jan Born

Rapid eye movement (REM) sleep has been considered important for consolidation of memories, particularly of skills. Contrary to expectations, we found that REM sleep suppression by administration of selective serotonin or norepinephrine re-uptake inhibitors after training did not impair consolidation of skills or word-pairs in healthy men but rather enhanced gains in finger tapping accuracy together with sleep spindles. Our results indicate that REM sleep as a unitary phenomenon is not required for skill-memory consolidation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories

Björn Rasch; Klara Spalek; S. Buholzer; Roger Luechinger; Peter Boesiger; Andreas Papassotiropoulos; Dominique J.-F. de Quervain

Emotionally arousing events are typically well remembered, but there is a large interindividual variability for this phenomenon. We have recently shown that a functional deletion variant of ADRA2B, the gene encoding the α2b-adrenergic receptor, is related to enhanced emotional memory in healthy humans and enhanced traumatic memory in war victims. Here, we investigated the neural mechanisms of this effect in healthy participants by using fMRI. Carriers of the ADRA2B deletion variant exhibited increased activation of the amygdala during encoding of photographs with negative emotional valence compared with noncarriers of the deletion. Additionally, functional connectivity between amygdala and insula was significantly stronger in deletion carriers. The present findings indicate that the ADRA2B deletion variant is related to increased responsivity and connectivity of brain regions implicated in emotional memory.


Journal of Cognitive Neuroscience | 2006

Combined Blockade of Cholinergic Receptors Shifts the Brain from Stimulus Encoding to Memory Consolidation

Björn Rasch; Jan Born; Steffen Gais

High central nervous system levels of acetylcholine (ACh) are commonly regarded as crucial for learning and memory, and a decline in cholinergic neurotransmission is associated with Alzheimers dementia. However, recent findings revealed exceptions to this rule: The low ACh tone characterizing slowwave sleep (SWS) has proven necessary for consolidation of hippocampus-dependent declarative memories during this sleep stage. Such observations, together with recent models of a hippocampal-neocortical dialogue underlying systems memory consolidation, suggest that high levels of ACh support memory encoding, whereas low levels facilitate consolidation. We tested this hypothesis in human subjects by blocking cholinergic neurotransmission during wakefulness, starting 30 min after learning. Subjects received the muscarinic antagonist scopolamine (4 g/kg bodyweight intravenously) and the nicotinic antagonist mecamylamine (5 mg orally). Compared to placebo, combined muscarinic and nicotinic receptor blockade significantly improved consolidation of declarative memories tested 10 hr later, but simultaneously impaired acquisition of similar material. Consolidation of procedural memories, which are not dependent on hippocampal functioning, was unaffected. Neither scopolamine nor mecamylamine alone enhanced declarative memory consolidation. Our findings support the notion that ACh acts as a switch between modes of acquisition and consolidation. We propose that the natural shift in central nervous system cholinergic tone from high levels during wakefulness to minimal levels during SWS optimizes declarative memory consolidation during a period with no need for new memory encoding.


Nature Neuroscience | 2013

The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge

Ines Wilhelm; Michael R. Rose; Kathrin I Imhof; Björn Rasch; Christian Büchel; Jan Born

When sleep followed implicit training on a motor sequence, children showed greater gains in explicit sequence knowledge after sleep than adults. This greater explicit knowledge in children was linked to their higher sleep slow-wave activity and to stronger hippocampal activation at explicit knowledge retrieval. Our data indicate the superiority of children in extracting invariant features from complex environments, possibly as a result of enhanced reprocessing of hippocampal memory representations during slow-wave sleep.


Neurobiology of Learning and Memory | 2012

Offline consolidation of memory varies with time in slow wave sleep and can be accelerated by cuing memory reactivations

Susanne Diekelmann; Simon Biggel; Björn Rasch; Jan Born

Memory representations are reactivated during slow-wave sleep (SWS) after learning, and these reactivations cause a beneficial effect of sleep for memory consolidation. Memory reactivations can also be externally triggered during sleep by associated cues which enhance the sleep-dependent memory consolidation process. Here, we compared in humans the influence of sleep periods (i) of 40min and (ii) of 90min without externally triggered reactivations and (iii) of externally triggered reactivations by an associated odor cue during a 40-min sleep period on the consolidation of previously learned hippocampus-dependent visuo-spatial memories. We show that external reactivation by an odor cue during the 40-min sleep period enhanced memory stability to the same extent as 90min of sleep without odor reactivation. In contrast, 40min of sleep without external reactivations were not sufficient to benefit memory. In the 90-min sleep condition, memory enhancements were associated with time spent in SWS and were independent of the presence or absence of REM sleep. These results suggest that the efficacy of hippocampus-dependent memory consolidation depends on the duration of sleep and particularly SWS. External reactivation cues can accelerate the consolidation process even during shorter sleep episodes.

Collaboration


Dive into the Björn Rasch's collaboration.

Top Co-Authors

Avatar

Jan Born

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Schreiner

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge