Björn Sandrock
University of Marburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Björn Sandrock.
Nature | 2006
Jörg Kämper; Regine Kahmann; Michael Bölker; Li-Jun Ma; Thomas Brefort; Barry J. Saville; Flora Banuett; James W. Kronstad; Scott E. Gold; Olaf Müller; Michael H. Perlin; Han A. B. Wösten; Ronald P. de Vries; José Ruiz-Herrera; Cristina G. Reynaga-Peña; Karen M. Snetselaar; Michael McCann; José Pérez-Martín; Michael Feldbrügge; Christoph W. Basse; Gero Steinberg; Jose I. Ibeas; William Holloman; Plinio Guzman; Mark L. Farman; Jason E. Stajich; Rafael Sentandreu; Juan M. González-Prieto; John C. Kennell; Lázaro Molina
Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant–microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no ‘true’ virulence factors had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
Molecular Microbiology | 2006
Michael Mahlert; Leonora Leveleki; Andrea Hlubek; Björn Sandrock; Michael Bölker
Small GTP‐binding proteins of the highly conserved Rho family act as molecular switches regulating cell signalling, cytoskeletal organization and vesicle trafficking in eukaryotic cells. Here we show that in the dimorphic plant pathogenic fungus Ustilago maydis deletion of either cdc42 or rac1 results in loss of virulence but does not interfere with viability. Cells deleted for cdc42 display a cell separation defect during budding. We have previously shown that the Rho‐specific guanine nucleotide exchange factor (GEF) Don1 is required for cell separation in U. maydis. Expression of constitutive active Cdc42 rescues the phenotype of don1 mutant cells indicating that Don1 triggers cell separation by activating Cdc42. Deletion of rac1 affects cellular morphology and interferes with hyphal growth, whereas overexpression of wild‐type Rac1 induces filament formation in haploid cells. This indicates that Rac1 is both necessary and sufficient for the dimorphic switch from budding to hyphal growth. Cdc42 and Rac1 share at least one common essential function because depletion of both Rac1 and Cdc42 is lethal. Expression of constitutively active Rac1Q61L is lethal and results in swollen cells with a large vacuole. The morphological phenotype, but not lethality is suppressed in cla4 mutant cells suggesting that the PAK family kinase Cla4 acts as a downstream effector of Rac1.
Molecular Microbiology | 2004
Leonora Leveleki; Michael Mahlert; Björn Sandrock; Michael Bölker
The phytopathogenic basidiomycete Ustilago maydis displays a dimorphic switch between budding growth of haploid cells and filamentous growth of the dikaryon. In a screen for mutants affected in morphogenesis and cytokinesis, we identified the serine/threonine protein kinase Cla4, a member of the family of p21‐activated kinases (PAKs). Cells, in which cla4 has been deleted, are viable but they are unable to bud properly. Instead, cla4 mutant cells grow as branched septate hyphae and divide by contraction and fission at septal cross walls. Delocalized deposition of chitinous cell wall material along the cell surface is observed in cla4 mutant cells. Deletion of the Cdc42/Rac1 interaction domain (CRIB) results in a constitutive active Cla4 kinase, whose expression is lethal for the cell. cla4 mutant cells are unable to induce pathogenic development in plants and to display filamentous growth in a mating reaction, although they are still able to secrete pheromone and to undergo cell fusion with wild‐type cells. We propose that Cla4 is involved in the regulation of cell polarity during budding and filamentation.
Journal of Cell Science | 2008
Christian Böhmer; Maik Böhmer; Michael Bölker; Björn Sandrock
In the dimorphic fungus Ustilago maydis the Rho-family GTP-binding protein Cdc42 and the Ste20-like kinase Don3 are both essential for triggering cell separation during cytokinesis. Since Don3 does not contain a Cdc42/Rac interaction and binding domain (CRIB), it is unclear how Cdc42 and Don3 cooperate in the regulation of cytokinesis. To analyse the regulatory network we generated an analogue-sensitive Don3 variant (Don3-as) that allows specific inhibition in vivo. The engineered kinase Don3M157A is fully active in vivo and can be specifically inhibited by low concentrations of the ATP-analogue NA-PP1. Inhibition of the Don3-as kinase activity immediately blocked cell separation resulting in the formation of clusters of nonseparated cells. Covalent labelling of cell wall proteins showed that, upon release of inhibition, cytokinesis was resumed instantaneously in all cells. By sequentially activating Don3 and Cdc42 we were able to demonstrate that both proteins act independently of each other and that Don3 activity precedes that of Cdc42. We provide evidence that Don3 and Cdc42 are crucial for the assembly of a contractile actomyosin ring, which is a prerequisite for secondary septum formation. We propose, that Don3 is involved in establishing a landmark, at which the Cdc42-dependent actomyosin ring formation will occur.
Eukaryotic Cell | 2009
Cau D. Pham; Zhanyang Yu; Björn Sandrock; Michael Bölker; Scott E. Gold; Michael H. Perlin
ABSTRACT Proteins of the 14-3-3 and Rho-GTPase families are functionally conserved eukaryotic proteins that participate in many important cellular processes such as signal transduction, cell cycle regulation, malignant transformation, stress response, and apoptosis. However, the exact role(s) of these proteins in these processes is not entirely understood. Using the fungal maize pathogen, Ustilago maydis, we were able to demonstrate a functional connection between Pdc1 and Rho1, the U. maydis homologues of 14-3-3ε and Rho1, respectively. Our experiments suggest that Pdc1 regulates viability, cytokinesis, chromosome condensation, and vacuole formation. Similarly, U. maydis Rho1 is also involved in these three essential processes and exerts an additional function during mating and filamentation. Intriguingly, yeast two-hybrid and epistasis experiments suggest that both Pdc1 and Rho1 could be constituents of the same regulatory cascade(s) controlling cell growth and filamentation in U. maydis. Overexpression of rho1 ameliorated the defects of cells depleted for Pdc1. Furthermore, we found that another small G protein, Rac1, was a suppressor of lethality for both Pdc1 and Rho1. In addition, deletion of cla4, encoding a Rac1 effector kinase, could also rescue cells with Pdc1 depleted. Inferring from these data, we propose a model for Rho1 and Pdc1 functions in U. maydis.
PLOS Pathogens | 2011
Johannes Freitag; Daniel Lanver; Christian Böhmer; Kay Oliver Schink; Michael Bölker; Björn Sandrock
Differentiation of hyphae into specialized infection structures, known as appressoria, is a common feature of plant pathogenic fungi that penetrate the plant cuticle. Appressorium formation in U. maydis is triggered by environmental signals but the molecular mechanism of this hyphal differentiation is largely unknown. Infectious hyphae grow on the leaf surface by inserting regularly spaced retraction septa at the distal end of the tip cell leaving empty sections of collapsed hyphae behind. Here we show that formation of retraction septa is critical for appressorium formation and virulence in U. maydis. We demonstrate that the diaphanous-related formin Drf1 is necessary for actomyosin ring formation during septation of infectious hyphae. Drf1 acts as an effector of a Cdc42 GTPase signaling module, which also consists of the Cdc42-specific guanine nucleotide exchange factor Don1 and the Ste20-like kinase Don3. Deletion of drf1, don1 or don3 abolished formation of retraction septa resulting in reduced virulence. Appressorium formation in these mutants was not completely blocked but infection structures were found only at the tip of short filaments indicating that retraction septa are necessary for appressorium formation in extended infectious hyphae. In addition, appressoria of drf1 mutants penetrated the plant tissue less frequently.
Molecular Microbiology | 2008
Andrea Hlubek; Kay Oliver Schink; Michael Mahlert; Björn Sandrock; Michael Bölker
The highly conserved GTP‐binding proteins Cdc42 and Rac1 regulate cytokinesis, establishment of cell polarity and vesicular trafficking. In the dimorphic fungus Ustilago maydis, Rac1 is required for cell polarity and budding, while Cdc42 is essential for cell separation during cytokinesis. The same cell separation defect is also observed in mutants that lack Don1, a guanine nucleotide exchange factor (GEF) of the Dbl family. We have generated a series of chimeric GTP‐binding proteins consisting of different portions of Cdc42 and Rac1. In vivo complementation analysis revealed that a short region encompassing amino acids 41–56 determines signalling specificity. Remarkably, substitution of a single amino acid at position 56 within this specificity domain is sufficient to confer Cdc42 function to Rac1 in vivo. Expression of Rac1W56F in Δcdc42 mutant cells resulted in complementation of the cell separation defect. In vitro GDP/GTP exchange assays demonstrated that the Dbl family GEF Don1 is highly specific for Cdc42 and cannot activate Rac1. However, if Rac1W56F is used as a substrate, Don1 is able to stimulate GDP/GTP exchange. Together these data indicate that activation by the GEF Don1 is an important determinant of Cdc42‐specific signalling in vivo.
Molecular Biology of the Cell | 2011
Sonja Helene Frieser; Andrea Hlubek; Björn Sandrock; Michael Bölker
In the dimorphic fungus Ustilago maydis, Rac1 and its activator Cdc24 are essential for hyphal tip growth. Rac1 is shown to stimulate Cla4 kinase, which in turn triggers destruction of Cdc24. Expression of stabilized Cdc24 interferes with cell polarization, indicating that negative feedback regulation of Cdc24 is critical for tip growth.
Molecular Microbiology | 2006
Björn Sandrock; Christian Böhmer; Michael Bölker
Septum formation is a crucial step of cytokinesis in fungi. In the basidiomycete Ustilago maydis, the germinal centre kinase Don3 triggers initiation of a secondary septum necessary for cell separation after cytokinesis. Here we show that oligomerization of Don3 via a putative coiled‐coil domain is critical for secondary septum formation. Within the Don3 sequence we detected a characteristic C‐terminal sequence motif (T‐motif), which determines the subcellular localization of Don3 but is not required for regulation of cell separation. This motif defines a novel family of fungal protein kinases including Sid1p, an essential component of the septation initiation network (SIN) in Schizosaccharomyces pombe. Using the yeast two‐hybrid system we isolated the Don3‐interacting protein Dip1, which is similar to S. pombe Cdc14p, another member of the SIN. Remarkably, deletion of dip1 did not interfere with cytokinesis in U. maydis, but both dip1 and don3 mutants were affected in nuclear envelope breakdown (NEBD) during mitosis. This phenotype has already been described for mutants, which lack the small GTPase Ras3, the U. maydis homologue of the SIN component Spg1p. We propose that the Don3 kinase exerts a dual function in the regulation of cell separation and NEBD.
Current Opinion in Microbiology | 2014
Thorsten Stehlik; Björn Sandrock; Julia Ast; Johannes Freitag
Peroxisomes are nearly ubiquitous single-membrane organelles harboring multiple metabolic pathways beside their prominent role in the β-oxidation of fatty acids. Here we review the diverse metabolic functions of peroxisomes in fungi. A variety of fungal metabolites are at least partially synthesized inside peroxisomes. These include the essential co-factor biotin but also different types of secondary metabolites. Peroxisomal metabolites are often derived from acyl-CoA esters for example β-oxidation intermediates. In several ascomycetes a subtype of peroxisomes has been identified that is metabolically inactive but is required to plug the septal pores of wounded hyphae. Thus, peroxisomes are versatile organelles that can adapt their function to the life style of an organism. This remarkable variability suggests that the full extent of the biosynthetic capacity of peroxisomes is still elusive. Moreover, in fungi peroxisomes are non-essential under laboratory conditions making them attractive organelles for biotechnological approaches and the design of novel metabolic pathways in customized peroxisomes.