Björn Tews
German Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Björn Tews.
International Journal of Cancer | 2011
Grischa Toedt; Sebastian Barbus; Marietta Wolter; Jörg Felsberg; Björn Tews; Frederic Blond; Michael Sabel; Stefanie Hofmann; Natalia Becker; Christian Hartmann; Hiroko Ohgaki; Andreas von Deimling; Otmar D. Wiestler; Meinhard Hahn; Peter Lichter; Guido Reifenberger; Bernhard Radlwimmer
To identify novel glioma‐associated pathomechanisms and molecular markers, we performed an array‐based comparative genomic hybridization analysis of 131 diffuse astrocytic gliomas, including 87 primary glioblastomas (pGBIV), 13 secondary glioblastomas (sGBIV), 19 anaplastic astrocytomas (AAIII) and 12 diffuse astrocytomas (AII). All tumors were additionally screened for IDH1 and IDH2 mutations. Expression profiling was performed for 74 tumors (42 pGBIV, 11 sGBIV, 13 AAIII, 8 AII). Unsupervised and supervised bioinformatic analyses revealed distinct genomic and expression profiles separating pGBIV from the other entities. Classifier expression signatures were strongly associated with the IDH1 gene mutation status. Within pGBIV, the rare subtype of IDH1 mutant tumors shared expression profiles with IDH1 mutant sGBIV and was associated with longer overall survival compared with IDH1 wild‐type tumors. In patients with IDH1 wild‐type pGBIV, PDGFRA gain or amplification as well as 19q gain were associated with patient outcome. Array‐CGH analysis additionally revealed homozygous deletions of the FGFR2 gene at 10q26.13 in 2 pGBIV, with reduced FGFR2 mRNA levels being frequent in pGBIV and linked to poor outcome. In conclusion, we report that diffuse astrocytic gliomas can be separated into 2 major molecular groups with distinct genomic and mRNA profiles as well as IDH1 gene mutation status. In addition, our results suggest FGFR2 as a novel glioma‐associated candidate tumor suppressor gene on the long arm of chromosome 10.
Cell Cycle | 2007
Harald Löffler; Tilmann Bochtler; Britta Fritz; Björn Tews; Anthony D. Ho; Jiri Lukas; Jiri Bartek; Alwin Krämer
The checkpoint kinase Chk1 is an established transducer of ATR- and ATM-dependent signalling in response to DNA damage. In addition to its nuclear localization, Chk1 localizes to interphase centrosomes and thereby negatively regulates entry into mitosis by preventing premature activation of cyclin B-Cdk1 during unperturbed cell cycles. Here, we demonstrate that DNA damage caused by ultraviolet irradiation or hydroxyurea treatment leads to centrosomal accumulation of endogenous Chk1 in normal human BJ fibroblasts and in ATR- or ATM-deficient fibroblasts. Chemical inhibition of ATR/ATM by caffeine led to enhanced centrosomal Chk1 deposition associated with nuclear Chk1 depletion. In contrast to normal or ATM-deficient fibroblasts, genetically ATR-deficient Seckel-fibroblasts showed detectable constitutive centrosomal accumulation of Chk1 even in the absence of exogenous insults. After DNA damage, the centrosomal fraction of Chk1 was found to be phosphorylated at ATR/ATM phosphorylation sites. Forced immobilization of kinase-inactive but not wild-type Chk1 to centrosomes resulted in a G2/M checkpoint defect. Finally, both DNA damage, and forced centrosomal expression of Chk1 in the absence of genotoxic treatments, induced centrosome amplification in a subset of cells, a phenomenon which could be suppressed by inhibition of ATM/ATR-mediated signaling. Taken together, our results suggest that accumulation of phosphorylated Chk1 at centrosomes constitutes an additional element in the DNA damage response. Centrosomal Chk1 induces G2/M cell cycle arrest and may evoke centrosome amplification, the latter possibly providing a backup mechanism for elimination of cells with impaired DNA damage checkpoints operating earlier during the cell cycle.
Oncogene | 2005
Kai Neben; Susanne Schnittger; Benedikt Brors; Björn Tews; Felix Kokocinski; Torsten Haferlach; Jasmin Müller; Meinhard Hahn; Wolfgang Hiddemann; Roland Eils; Peter Lichter; Claudia Schoch
In acute myeloid leukemia (AML), constitutive activation of the FLT3 receptor tyrosine kinase, either by internal tandem duplications (FLT3-ITD) of the juxtamembrane region or by point mutations in the second tyrosine kinase domain (FLT3-TKD), as well as point mutations of the NRAS gene (NRAS-PM) are among the most frequent somatic gene mutations. To elucidate whether these mutations cause aberrant signal transduction in AML, we used gene expression profiling in a series of 110 newly diagnosed AML patients with normal karyotype. The different algorithms used for data analysis revealed highly concordant sets of genes, indicating that the identified gene signatures are specific for each analysed subgroup. Whereas samples with FLT3-ITD and FLT3-TKD could be separated with up to 100% accuracy, this did not apply for NRAS-PM and wild-type samples, suggesting that only FLT3-ITD and FLT3-TKD are associated with an apparent signature in AML. The set of discriminating genes included several known genes, which are involved in cell cycle control (CDC14A, WEE1), gene transcription (HOXB5, FOXA1), and signal transduction (SMG1). In conclusion, we showed that unique gene expression patterns can be correlated with FLT3-ITD and FLT3-TKD. This might lead to the identification of further pathogenetic relevant candidate genes particularly in AML with normal karyotype.
Neuro-oncology | 2013
Benedikt Wiestler; Rainer Claus; Sabine A. Hartlieb; Maximilian G. Schliesser; Elisa K. Weiss; Thomas Hielscher; Michael Platten; Laura M. Dittmann; Christoph Meisner; Jörg Felsberg; Caroline Happold; Matthias Simon; Guido Nikkhah; Kirsten Papsdorf; Joachim P. Steinbach; Michael Sabel; Christiane Grimm; Dieter Weichenhan; Björn Tews; Guido Reifenberger; David Capper; Wolf Müller; Christoph Plass; Michael Weller; Wolfgang Wick
BACKGROUND The number of patients age >65 years with malignant gliomas is increasing. Prognosis of these patients is worse compared with younger patients. To determine biological differences among malignant gliomas of different age groups and help to explain the survival heterogeneity seen in the NOA-08 trial, the prevalence and impact of recently established biomarkers for outcome in younger patients were characterized in elderly patients. METHODS Prevalences of mutations of isocitrate dehydrogenase 1 (IDH1) and histone H3.3 (H3F3A), the glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and methylation of alkylpurine DNA N-glycosylase (APNG) and peroxiredoxin 1 (PRDX1) promoters were determined in a representative biomarker subset (n = 126 patients with anaplastic astrocytoma or glioblastoma) from the NOA-08 trial. RESULTS IDH1 mutations (R132H) were detected in only 3/126 patients, precluding determination of an association between IDH mutation and outcome. These 3 patients also displayed the G-CIMP phenotype. None of the IDH1 wild-type tumors were G-CIMP positive. Mutations in H3F3A were absent in all 103 patients sequenced for H3F3A. MassARRAY analysis of the APNG promoter revealed generally low methylation levels and failed to confirm any predictive properties for benefit from alkylating chemotherapy. Neither did PRDX1 promoter methylation show differential methylation or association with outcome in this cohort. In a 170-patient cohort from The Cancer Genome Atlas database matched for relevant prognostic factors, age ≥65 years was strongly associated with shorter survival. CONCLUSIONS Despite an age-independent stable frequency of O(6)-methylguanine-DNA methyltransferase (MGMT) promoter hypermethylation, tumors in this age group largely lack prognostically favorable markers established in younger glioblastoma patients, which likely contributes to the overall worse prognosis of elderly patients. However, the survival differences hint at fundamental further differences among malignant gliomas of different age groups.
Oncogene | 2004
Kai Neben; Björn Tews; Gunnar Wrobel; Meinhard Hahn; Felix Kokocinski; Christian Giesecke; Ulf Krause; Anthony D. Ho; Alwin Krämer; Peter Lichter
Centrosomes, which mediate accurate chromosome segregation during mitosis, undergo duplication precisely once per cell division at the G1/S boundary. Recently, we described centrosome aberrations as a possible cause of aneuploidy in acute myeloid leukemia (AML) and found a correlation of the percentage of cells carrying abnormal centrosomes to their cytogenetic risk profile. To elucidate the molecular events responsible for the development of centrosome aberrations in AML, tumor RNA of 29 AML samples was hybridized to cDNA microarrays. The microarrays comprised some 2800 different genes with relevance to hematopoiesis, tumorigenesis and mitosis and included a set of 359 centrosome-associated genes. We identified two gene expression signatures, which allowed an accurate classification according to the extent of centrosome aberrations and the ploidy status in 28 of 29 patients each. Specifically, 18 genes were present in both signatures, including genes that code for cell cycle regulatory proteins (cyclin A2, cyclin D3, cyclin H, CDK6, p18INK4c, p21Cip1, PAK1) and centrosome-associated proteins (pericentrin, α2-tubulin, NUMA1, TUBGCP2, PRKAR2A). In conclusion, the high expression of centrosome-associated genes matches the description of centrosome aberrations in several tumor types. Moreover, in AML the identification of G1/S-phase stimulatory genes suggests that one mechanism of aneuploidy induction might be the deregulation of centrosome replication at the G1/S boundary.
Oncogene | 2007
Björn Tews; P. Roerig; Christian Hartmann; Meinhard Hahn; Jörg Felsberg; Britta Blaschke; Michael Sabel; Annegret Kunitz; Grischa Toedt; Kai Neben; Axel Benner; A. Von Deimling; Guido Reifenberger; Peter Lichter
Deletions of chromosomal arms 1p and 19q are frequent in oligodendroglial tumours and have been associated with sensitivity to radio- and chemotherapy as well as favourable prognosis. By using microarray-based expression profiling, we found that oligodendroglial tumours with 1p and 19q losses showed significantly lower expression of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxyl-terminal domain 4 gene (CITED4) at 1p34.2 as compared to tumours without 1p and 19q losses. Mutational analysis showed no CITED4 mutations in gliomas. However, 1p and 19q losses as well as low expression of CITED4 transcripts were significantly associated with hypermethylation of the CITED4-associated CpG island. In line with the latter finding, treatment of CITED4 hypermethylated glioma cell lines with 5-aza-2′-deoxycytidine and trichostatine A resulted in a marked increase of the CITED4 transcript levels. Furthermore, CITED4 hypermethylation was significantly associated with longer recurrence-free and overall survival of patients with oligodendroglial tumours. Taken together, our results indicate that CITED4 is epigenetically silenced in the vast majority of oligodendroglial tumours with 1p and 19q deletions and suggest CITED4 hypermethylation as a novel prognostic marker in oligodendroglioma patients.
Brain Pathology | 2007
Annegret Kunitz; Marietta Wolter; Jörg van den Boom; Jörg Felsberg; Björn Tews; Meinhard Hahn; Axel Benner; Michael Sabel; Peter Lichter; Guido Reifenberger; Andreas von Deimling; Christian Hartmann
Allelic losses on 19q are found in the majority of oligodendroglial tumors and approximately one‐third of diffuse astrocytomas. However, the tumor suppressor genes (TSG) on 19q are still elusive. Using cDNA microarray expression profiling, EMP3 at 19q13.3 was among those genes showing the most pronounced expression differences. In line with this, other authors reported EMP3 as being epigenetically silenced in neuroblastomas and astrocytomas. To further investigate EMP3 as a TSG candidate on 19q13.3, we performed molecular analysis of this gene in 162 human gliomas. Mutation analysis did not reveal EMP3 alteration in 132 gliomas. In oligodendroglial tumors, we found that aberrant methylation in the 5′‐region of EMP3 was significantly associated with reduced mRNA expression and LOH 19q. In astrocytomas, EMP3 hypermethylation was also paralleled by reduced expression but was independent of the 19q status. EMP3 hypermethylation was detected in more than 80% of diffuse, anaplastic astrocytomas and secondary glioblastomas. Primary glioblastomas, however, mostly lacked EMP3 hypermethylation and frequently overexpressed EMP3. Our data corroborate that oligodendroglial and astrocytic gliomas often show EMP3 hypermethylation and aberrant expression. Furthermore, our findings suggest that primary and secondary glioblastomas are not only characterized by distinct genetic profiles but also differ in their epigenetic aberrations.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Björn Tews; Kai Schönig; Michael E. Arzt; Stefano Clementi; Mengia-Seraina Rioult-Pedotti; Ajmal Zemmar; Stefan Berger; Miriam Schneider; Thomas Enkel; Oliver Weinmann; Hansjörg Kasper; Martin E. Schwab; Dusan Bartsch
We have generated a transgenic rat model using RNAi and used it to study the role of the membrane protein Nogo-A in synaptic plasticity and cognition. The membrane protein Nogo-A is expressed in CNS oligodendrocytes and subpopulations of neurons, and it is known to suppress neurite growth and regeneration. The constitutively expressed polymerase II-driven transgene was composed of a microRNA-targeting Nogo-A placed into an intron preceding the coding sequence for EGFP, thus quantitatively labeling cells according to intracellular microRNA expression. The transgenic microRNA in vivo efficiently reduced the concentration of Nogo-A mRNA and protein preferentially in neurons. The resulting significant increase in long-term potentiation in both hippocampus and motor cortex indicates a repressor function of Nogo-A in synaptic plasticity. The transgenic rats exhibited prominent schizophrenia-like behavioral phenotypes, such as perseveration, disrupted prepulse inhibition, and strong withdrawal from social interactions. This fast and efficient microRNA-mediated knockdown provides a way to silence gene expression in vivo in transgenic rats and shows a role of Nogo-A in regulating higher cognitive brain functions.
Journal of the National Cancer Institute | 2011
Sebastian Barbus; Björn Tews; Daniela Karra; Meinhard Hahn; Bernhard Radlwimmer; Nicolas Delhomme; Christian Hartmann; Jörg Felsberg; Dietmar Krex; Gabriele Schackert; Ramon Martinez; Guido Reifenberger; Peter Lichter
Although the prognosis of most glioblastoma patients is poor, 3%-5% patients show long-term survival of 36 months or longer after diagnosis. To study the differences in activation of biochemical pathways, we performed mRNA and protein expression analyses of primary glioblastoma tissues from 11 long-term survivors (LTS; overall survival ≥ 36 months) and 12 short-term survivors (STS; overall survival ≤ 6 months). The mRNA expression ratio of the retinoic acid transporters fatty acid-binding protein 5 (FABP5) and cellular retinoic acid-binding protein 2 (CRABP2), which regulate the differential delivery of retinoic acid to either antioncogenic retinoic acid receptors or prooncogenic nuclear receptor peroxisome proliferator-activated receptor delta, was statistically significantly higher in the tumor tissues of STS than those of LTS (median ratio in STS tumors = 3.64, 10th-90th percentile = 1.43-4.54 vs median ratio in LTS tumors = 1.42, 10th-90th percentile = -0.98 to 2.59; P < .001). High FABP5 protein expression in STS tumors was associated with highly proliferating tumor cells and activation of 3-phosphoinositide-dependent protein kinase-1 and v-akt murine thymoma viral oncogene homolog. The data suggest that retinoic acid signaling activates different targets in glioblastomas from LTS and STS. All statistical tests were two-sided.
Biological Chemistry | 2002
Jochen Wilhelm; H. Reuter; Björn Tews; Alfred Pingoud; Meinhard Hahn
Abstract The DNAbased quantitative analysis of genetic chimerism is becoming increasingly more important for molecular biology in general and molecular medicine in particular. Useful genomic targets for these analyses are polymorphic sequences, but here the problem of a reliable quantification with high dynamic range is not yet satisfactorily solved. To this end we have combined the allelespecific amplification with a realtime PCRbased quantification for rapid allelotyping and chimerism analysis. The sequence variations are discriminated by the 3end of the allelespecific primer. Amplification is monitored by SYBRGreen I fluorescence. We demonstrate the efficiency of this method for two clinically relevant targets: (i) the 10 bp insertion/deletion polymorphism in the promoter of the factor VIIc (FVIIc) gene and (ii) the 4G/5G single nucleotide polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene. Both polymorphisms are associated with clinical risk factors. Allelotyping results were in complete agreement with those obtained by reference methods. Mixed chimeric DNA samples could be quantified reliably with a dynamic range of 1:3000 for an easy target (FVIIc) and of 1:64 for a difficult target (PAI-1). Our protocol is particularly useful for rapid, reliable and inexpensive genotyping and quantitative chimerism analysis without requiring expensive fluorophor dye labelled probes.