Björn Thors
Ericsson
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Björn Thors.
IEEE Transactions on Antennas and Propagation | 2005
Björn Thors; Hans Steyskal; Henrik Holter
In this paper, a synthesis procedure to design thin broad-band fragmented aperture array elements is described. The arrays are assumed to be infinite periodic and the elements consist of a conducting pattern etched on a dielectric backed by a groundplane. A genetic algorithm (GA) is used to design the conducting pattern, relative permittivity, and thickness of the dielectric substrate with respect to array scan and bandwidth performance. The fitness function in the GA is evaluated using a finite-difference time-domain code with periodic boundary conditions. For a substrate thicker than about 0.1 /spl lambda//sub L/ (/spl lambda//sub L/= wavelength at the lowest frequency in the frequency band investigated), it was found that a bandwidth of at least one octave can be obtained for arrays scanned within 45/spl deg/ from broadside.
IEEE Antennas and Wireless Propagation Letters | 2015
Davide Colombi; Björn Thors; Christer Tornevik
Spectrum is a scarce resource, and the interest for utilizing frequency bands above 6 GHz for future radio communication systems is increasing. The possible use of higher frequency bands implies new challenges in terms of electromagnetic field (EMF) exposure assessments since the fundamental exposure metric (basic restriction) is changing from specific absorption rate (SAR) to power density. In this study, the implication of this change is investigated in terms of the maximum possible radiated power (Pmax) from a device used in close proximity to the human body. The results show that the existing exposure limits will lead to a non-physical discontinuity of several dB in Pmax as the transition is made from SAR to power density based basic restrictions. As a consequence, to be compliant with applicable exposure limits at frequencies above 6 GHz, Pmax might have to be several dB below the power levels used for current cellular technologies. Since the available power in uplink has a direct impact on the system capacity and coverage, such an inconsistency, if not resolved, might have a large effect on the development of the next generation cellular networks (5G).
IEEE Transactions on Electromagnetic Compatibility | 2008
Björn Thors; Marie L. Strydom; Björn Hansson; Frans J. C. Meyer; Kimmo Kärkkäinen; Peter Zollman; Sami Ilvonen; Christer Tornevik
In this paper, maximum specific absorption rate (SAR) estimation formulas for RF main beam exposure from mobile communication base station antennas are proposed. The formulas, given for both whole-body SAR and localized SAR, are heuristic in nature and valid for a class of common base station antennas. The formulas were developed based on a number of physical observations and are supported by results from an extensive literature survey together with supplementary measurements and numerical simulations of typical exposure situations. Using exposure limits, the proposed SAR estimation formulas can be converted to formulas for estimating compliance distance.
Radiation Protection Dosimetry | 2013
Davide Colombi; Björn Thors; Tomas Persson; Niklas Wirén; Lars-Eric Larsson; Mikael Jonsson; Christer Tornevik
Knowledge of realistic power levels is key when conducting accurate EMF exposure assessments. In this study, downlink output power distributions for radio base stations in 2G and 3G mobile communication networks have been assessed. The distributions were obtained from network measurement data collected from the Operations Support System, which normally is used for network monitoring and management. Significant amounts of data were gathered simultaneously for large sets of radio base stations covering wide geographical areas and different environments. The method was validated with in situ measurements. For the 3G network, the 90th percentile of the averaged output power during high traffic hours was found to be 43 % of the maximum available power. The corresponding number for 2G, with two or more transceivers installed, was 65 % or below.
IEEE Access | 2016
Björn Thors; Davide Colombi; Zhinong Ying; Thomas Bolin; Christer Tornevik
In this paper, radio-frequency (RF) electromagnetic field (EMF) exposure evaluations are conducted in the frequency range 10-60 GHz for array antennas intended for user equipment (UE) and low-power radio base stations in 5G mobile communication systems. A systematic study based on numerical power density simulations considering effects of frequency, array size, array topology, distance to exposed part of human body, and beam steering range is presented whereby the maximum transmitted power to comply with RF EMF exposure limits specified by the International Commission on Non-Ionizing Radiation Protection, the US Federal Communications Commission, and the Institute of Electrical and Electronics Engineers is determined. The maximum transmitted power is related to the maximum equivalent isotropically radiated power to highlight the relevance of the output power restrictions for a communication channel. A comparison between the simulation and measurement data is provided for a canonical monopole antenna. For small distances, with the antennas transmitting directly toward the human body, it is found that the maximum transmitted power is significantly below the UE power levels used in existing third and fourth generation mobile communication systems. Results for other conceivable exposure scenarios based on technical solutions that could allow for larger output power levels are also discussed. The obtained results constitute valuable information for the design of future mobile communication systems and for the standardization of EMF compliance assessment procedures of 5G devices and equipment.
Bioelectromagnetics | 2014
Björn Thors; Arno Thielens; Jonas Fridén; Davide Colombi; Christer Tornevik; Günter Vermeeren; Luc Martens; Wout Joseph
In this paper, different methods for practical numerical radio frequency exposure compliance assessments of radio base station products were investigated. Both multi-band base station antennas and antennas designed for multiple input multiple output (MIMO) transmission schemes were considered. For the multi-band case, various standardized assessment methods were evaluated in terms of resulting compliance distance with respect to the reference levels and basic restrictions of the International Commission on Non-Ionizing Radiation Protection. Both single frequency and multiple frequency (cumulative) compliance distances were determined using numerical simulations for a mobile communication base station antenna transmitting in four frequency bands between 800 and 2600 MHz. The assessments were conducted in terms of root-mean-squared electromagnetic fields, whole-body averaged specific absorption rate (SAR) and peak 10 g averaged SAR. In general, assessments based on peak field strengths were found to be less computationally intensive, but lead to larger compliance distances than spatial averaging of electromagnetic fields used in combination with localized SAR assessments. For adult exposure, the results indicated that even shorter compliance distances were obtained by using assessments based on localized and whole-body SAR. Numerical simulations, using base station products employing MIMO transmission schemes, were performed as well and were in agreement with reference measurements. The applicability of various field combination methods for correlated exposure was investigated, and best estimate methods were proposed. Our results showed that field combining methods generally considered as conservative could be used to efficiently assess compliance boundary dimensions of single- and dual-polarized multicolumn base station antennas with only minor increases in compliance distances.
international conference on electromagnetics in advanced applications | 2013
Davide Colombi; Björn Thors; N. Wirén; Lars-Eric Larsson; Christer Tornevik
Human exposure to the radio frequency electromagnetic fields (EMF) emitted by radio base stations (RBS) is proportional to the transmitted power. Thus, knowledge of actual power levels is key for a correct estimate of the actual EMF exposure. In this study, downlink output power distributions for RBSs in a 4G LTE mobile communication network have been determined. By extracting data using the operations support system (OSS) of the network, statistics were obtained based on 24 hours measurements for more than 5000 RBSs. The network measurement approach was verified with in-situ power density measurements. It was found that the actual output power levels are significantly below the theoretical maximum. For high-traffic periods, the 90th percentile transmitted power was found to be about 12% of the theoretical maximum.
Bioelectromagnetics | 2011
Björn Hansson; Björn Thors; Christer Tornevik
In this work, the effect of antenna element loading on the localized specific absorption rate (SAR) has been analyzed for base station antennas. The analysis was conducted in order to determine whether localized SAR measurements of large multi-element base station antennas can be conducted using standardized procedures and commercially available equipment. More specifically, it was investigated if the antenna shifting measurement procedure, specified in the European base station exposure assessment standard EN 50383, will produce accurate localized SAR results for base station antennas larger than the specified measurement phantom. The obtained results show that SAR accuracy is affected by the presence of lossy material within distances of one wavelength from the tested antennas as a consequence of coupling and redistribution of transmitted power among the antenna elements. It was also found that the existing standardized phantom is not optimal for SAR measurements of large base station antennas. A new methodology is instead proposed based on a larger, box-shaped, whole-body phantom.
Physics in Medicine and Biology | 2009
Björn Thors; Björn Hansson; Christer Tornevik
In this paper, a procedure is proposed for generating simple and practical compliance boundaries for mobile communication base station antennas. The procedure is based on a set of formulae for estimating the specific absorption rate (SAR) in certain directions around a class of common base station antennas. The formulae, given for both whole-body and localized SAR, require as input the frequency, the transmitted power and knowledge of antenna-related parameters such as dimensions, directivity and half-power beamwidths. With knowledge of the SAR in three key directions it is demonstrated how simple and practical compliance boundaries can be generated outside of which the exposure levels do not exceed certain limit values. The conservativeness of the proposed procedure is discussed based on results from numerical radio frequency (RF) exposure simulations with human body phantoms from the recently developed Virtual Family.
IEEE Access | 2015
Paramananda Joshi; Mukesh Agrawal; Björn Thors; Davide Colombi; Ashwani Kumar; Christer Tornevik
The aim of this paper is to present results on output power level distributions of radio base stations (RBSs) and user devices connected to a wideband code division multiple access-based third generation (3G) mobile communication network in India and relate the results to realistic human exposure to radio frequency (RF) electromagnetic field (EMF) emitted by the corresponding RBSs and the devices. The output power level distributions have been obtained through network-based measurements. In downlink, data from 868 RBSs were gathered during seven days. The RBSs were connected to five different radio network controllers (RNCs) located in different regions of India. The mean, the median, and the 95th percentile RBS output power values were found to be 24%, 21%, and 53%, respectively, of the maximum available power. In the uplink direction, output power levels of 3G devices connected to 1256 RBSs and the same five RNCs as in the downlink were assessed separately for voice, data, voice + data, and video applications. In total, more than 1 million hours of data traffic and more than 700 000 h of voice calls were measured in the uplink. The mean output power for the voice, data, the voice + data, and the video were found to be around 1%, 3%, 2%, and 4%, respectively, of the maximum available power for the 3G user devices. The findings are in line with previously published results obtained in other networks in Europe, and demonstrate that knowledge on realistic power levels is important for accurate assessments of the RF EMF exposure.