Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blaine A. Pfeifer is active.

Publication


Featured researches published by Blaine A. Pfeifer.


Microbiology and Molecular Biology Reviews | 2001

Biosynthesis of Polyketides in Heterologous Hosts

Blaine A. Pfeifer; Chaitan Khosla

SUMMARY Polyketide natural products show great promise as medicinal agents. Typically the products of microbial secondary biosynthesis, polyketides are synthesized by an evolutionarily related but architecturally diverse family of multifunctional enzymes called polyketide synthases. A principal limitation for fundamental biochemical studies of these modular megasynthases, as well as for their applications in biotechnology, is the challenge associated with manipulating the natural microorganism that produces a polyketide of interest. To ameliorate this limitation, over the past decade several genetically amenable microbes have been developed as heterologous hosts for polyketide biosynthesis. Here we review the state of the art as well as the difficulties associated with heterologous polyketide production. In particular, we focus on two model hosts, Streptomyces coelicolor and Escherichia coli. Future directions for this relatively new but growing technological opportunity are also discussed.


Molecular Pharmaceutics | 2013

Overcoming Nonviral Gene Delivery Barriers: Perspective and Future

Charles H. Jones; Chih-Kuang Chen; Anitha Ravikrishnan; Snehal Rane; Blaine A. Pfeifer

A key end goal of gene delivery research is to develop clinically relevant vectors that can be used to combat elusive diseases such as AIDS. Despite promising engineering strategies, efficiency and ultimately gene modulation efficacy of nonviral vectors have been hindered by numerous in vitro and in vivo barriers that have resulted in subviral performance. In this perspective, we concentrate on the gene delivery barriers associated with the two most common classes of nonviral vectors, cationic-based lipids and polymers. We present the existing delivery barriers and summarize current vector-specific strategies to overcome said barriers.


Nature Communications | 2014

Porphyrin–phospholipid liposomes permeabilized by near-infrared light

Kevin A. Carter; Shuai Shao; Matthew I. Hoopes; Dandan Luo; Bilal Ahsan; Vladimir M. Grigoryants; Wentao Song; Haoyuan Huang; Guojian Zhang; Ravindra K. Pandey; Jumin Geng; Blaine A. Pfeifer; Charles P. Scholes; Joaquin Ortega; Mikko Karttunen; Jonathan F. Lovell

The delivery of therapeutic compounds to target tissues is a central challenge in treating disease. Externally controlled drug release systems hold potential to selectively enhance localized delivery. Here we describe liposomes doped with porphyrin–phospholipid that are permeabilized directly by near-infrared light. Molecular dynamics simulations identified a novel light-absorbing monomer esterified from clinically approved components predicted and experimentally demonstrated to give rise to a more stable porphyrin bilayer. Light-induced membrane permeabilization is enabled with liposomal inclusion of 10 molar % porphyrin–phospholipid and occurs in the absence of bulk or nanoscale heating. Liposomes reseal following laser exposure and permeability is modulated by varying porphyrin–phospholipid doping, irradiation intensity or irradiation duration. Porphyrin–phospholipid liposomes demonstrate spatial control of release of entrapped gentamicin and temporal control of release of entrapped fluorophores following intratumoral injection. Following systemic administration, laser irradiation enhances deposition of actively loaded doxorubicin in mouse xenografts, enabling an effective single-treatment antitumour therapy.


Applied and Environmental Microbiology | 2003

Biosynthesis of Yersiniabactin, a Complex Polyketide-Nonribosomal Peptide, Using Escherichia coli as a Heterologous Host

Blaine A. Pfeifer; Clay C. C. Wang; Christopher T. Walsh; Chaitan Khosla

ABSTRACT The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 ± 21 (mean ± standard deviation) mg/liter and a volumetric productivity of 1.1 ± 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.


Metabolic Engineering | 2010

Metabolic flux analysis and pharmaceutical production.

Brett A. Boghigian; Gargi Seth; Robert Kiss; Blaine A. Pfeifer

Rational engineering of biological systems is an inherently complex process due to their evolved nature. Metabolic engineering emerged and developed over the past 20 years as a field in which methodologies for the rational engineering of biological systems is now being applied to specific industrial, medical, or scientific problems. Of considerable interest is the determination of metabolic fluxes within the cell itself, called metabolic flux analysis. This special issue and this review have a particular interest in the application of metabolic flux analysis for improving the pharmaceutical production process (for both small and large molecules). Though metabolic flux analysis has been somewhat limited in application towards pharmaceutical production, the overall goal is to: (1) have a better understanding of the organism and/or process in question, and (2) provide a rational basis to further engineer (on both metabolic and process scales) improved pharmaceutical production in these organisms. The focus of this review article is to present how experimental and computational methods of metabolic flux analysis have matured, mirroring the maturation of the metabolic engineering field itself, while highlighting some of the successful applications towards both small- and large-molecule pharmaceuticals.


Applied and Environmental Microbiology | 2002

Process and Metabolic Strategies for Improved Production of Escherichia coli-Derived 6-Deoxyerythronolide B

Blaine A. Pfeifer; Zhihao Hu; Peter Licari; Chaitan Khosla

ABSTRACT Recently, the feasibility of using Escherichia coli for the heterologous biosynthesis of complex polyketides has been demonstrated. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of complex polyketides is described. The effects of various physiological conditions on the productivity and titers of 6-deoxyerythronolide B (6dEB; the macrocyclic core of the antibiotic erythromycin) in recombinant cultures of E. coli were studied in shake flask cultures. The resulting data were used as a foundation to develop a high-cell-density fermentation procedure by building upon procedures reported earlier for recombinant protein production in E. coli. The fermentation strategy employed consistently produced ∼100 mg of 6dEB per liter, whereas shake flask conditions generated between 1 and 10 mg per liter. The utility of an accessory thioesterase (TEII from Saccharopolyspora erythraea) for enhancing the productivity of 6dEB in E. coli was also demonstrated (increasing the final titer of 6dEB to 180 mg per liter). In addition to reinforcing the potential for using E. coli as a heterologous host for wild-type- and engineered-polyketide biosynthesis, the procedures described in this study may be useful for the production of secondary metabolites that are difficult to access by other routes.


Molecular Pharmaceutics | 2008

Bacterial Hosts for Natural Product Production

Haoran Zhang; Yong Wang; Blaine A. Pfeifer

Four bacterial hosts are reviewed in the context of either native or heterologous natural product production. E. coli, B. subtilis, pseudomonads, and Streptomyces bacterial systems are presented with each having either a long-standing or more recent application to the production of therapeutic natural compounds. The four natural product classes focused upon include the polyketides, nonribosomal peptides, terpenoids, and flavonoids. From the perspective of both innate and heterologous production potential, each bacterial host is evaluated according to biological properties that would either hinder or facilitate natural product biosynthesis.


Chemistry & Biology | 2010

Complete Biosynthesis of Erythromycin A and Designed Analogs Using E. coli as a Heterologous Host

Haoran Zhang; Yong Wang; Jiequn Wu; Karin Skalina; Blaine A. Pfeifer

Erythromycin A is a potent antibiotic long-recognized as a therapeutic option for bacterial infections. The soil-dwelling bacterium Saccharopolyspora erythraea natively produces erythromycin A from a 55 kb gene cluster composed of three large polyketide synthase genes (each ~10 kb) and 17 additional genes responsible for deoxysugar biosynthesis, macrolide tailoring, and resistance. In this study, the erythromycin A gene cluster was systematically transferred from S. erythraea to E. coli for reconstituted biosynthesis, with titers reaching 10 mg/l. Polyketide biosynthesis was then modified to allow the production of two erythromycin analogs. Success establishes E. coli as a viable option for the heterologous production of erythromycin A and more broadly as a platform for the directed production of erythromycin analogs.


Biotechnology and Bioengineering | 2010

Investigating the role of native propionyl-CoA and methylmalonyl-CoA metabolism on heterologous polyketide production in Escherichia coli

Haoran Zhang; Brett A. Boghigian; Blaine A. Pfeifer

6‐Deoxyerythronolide B (6dEB) is the macrocyclic aglycone precursor of the antibiotic natural product erythromycin. Heterologous production of 6dEB in Escherichia coli was accomplished, in part, by designed over‐expression of a native prpE gene (encoding a propionyl‐CoA synthetase) and heterologous pcc genes (encoding a propionyl‐CoA carboxylase) to supply the needed propionyl‐CoA and (2S)‐methylmalonyl‐CoA biosynthetic substrates. Separate E. coli metabolism includes three enzymes, Sbm (a methylmalonyl‐CoA mutase), YgfG (a methylmalonyl‐CoA decarboxylase), and YgfH (a propionyl‐CoA:succinate CoA transferase), also involved in propionyl‐CoA and methylmalonyl‐CoA metabolism. In this study, the sbm, ygfG, and ygfH genes were individually deleted and over‐expressed to investigate their effect on heterologous 6dEB production. Our results indicate that the deletion and over‐expression of sbm did not influence 6dEB production; ygfG over‐expression reduced 6dEB production by fourfold while ygfH deletion increased 6dEB titers from 65 to 129 mg/L in shake flask experiments. It was also found that native E. coli metabolism could support 6dEB biosynthesis in the absence of exogenous propionate and the substrate provision pcc genes. Lastly, the effect of the ygfH deletion was tested in batch bioreactor cultures in which 6dEB titers improved from 206 to 527 mg/L. Biotechnol. Bioeng. 2010; 105: 567–573.


Trends in Biotechnology | 2016

Overcoming Gene-Delivery Hurdles: Physiological Considerations for Nonviral Vectors.

Andrew Hill; Mingfu Chen; Chih-Kuang Chen; Blaine A. Pfeifer; Charles H. Jones

With the use of contemporary tools and techniques, it has become possible to more precisely tune the biochemical mechanisms associated with using nonviral vectors for gene delivery. Consequently, nonviral vectors can incorporate numerous vector compositions and types of genetic cargo to develop diverse genetic therapies. Despite these advantages, gene-delivery strategies using nonviral vectors have poorly translated into clinical success due to preclinical experimental design considerations that inadequately predict therapeutic efficacy. Furthermore, the manufacturing and distribution processes are critical considerations for clinical application that should be considered when developing therapeutic platforms. In this review, we evaluate potential avenues towards improving the transition of gene-delivery technologies from in vitro assessment to human clinical therapy.

Collaboration


Dive into the Blaine A. Pfeifer's collaboration.

Top Co-Authors

Avatar

Charles H. Jones

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guojian Zhang

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Mahmoud Kamal Ahmadi

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Ming Jiang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Lei Fang

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Mingfu Chen

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Yong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Marie Beitelshees

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge