Blair K. Spearman
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blair K. Spearman.
American Mathematical Monthly | 1994
Blair K. Spearman; Kenneth S. Williams
(1994). Characterization of Solvable Quintics x5 + ax + b. The American Mathematical Monthly: Vol. 101, No. 10, pp. 986-992.
Mathematical journal of Okayama University | 2005
Melissa J. Lavallee; Blair K. Spearman; Kenneth S. Williams; Qiduan Yang
to be monogenic. Dummit and Kisilevsky[4] have shown that there exist infinitely many cyclic cubic fields whichare monogenic. The same has been shown for non-cyclic cubic fields, purequartic fields, bicyclic quartic fields, dihedral quartic fields by Spearman andWilliams [15], Funakura [6], Nakahara [14], Huard, Spearman and Williams[10] respectively. It is not known if there are infinitely many monogeniccyclic quartic fields. If
Czechoslovak Mathematical Journal | 1997
Blair K. Spearman; Kenneth S. Williams
AbstractLet Q denote the field of rational numbers. Let K be a cyclic quartic extension of Q. It is known that there are unique integers A, B, C, D such that
Communications in Algebra | 2015
Paul D. Lee; Blair K. Spearman; Qiduan Yang
Canadian Mathematical Bulletin | 2006
Alan K. Silvester; Blair K. Spearman; Kenneth S. Williams
K = Q\left( {\sqrt {A(D + B\sqrt D )} } \right)
Journal of The London Mathematical Society-second Series | 2001
Blair K. Spearman; Kenneth S. Williams
American Mathematical Monthly | 1992
Blair K. Spearman; Kenneth S. Williams
where A is squarefree and odd, D=B2+C2 is squarefree, B
International Journal of Mathematics and Mathematical Sciences | 1986
Christian Friesen; Joseph B. Muskat; Blair K. Spearman; Kenneth S. Williams
International Journal of Number Theory | 2010
Andrew Bremner; Blair K. Spearman
>
Canadian Mathematical Bulletin | 2010
Jennifer A. Johnstone; Blair K. Spearman