Blair T. Crewther
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blair T. Crewther.
Sports Medicine | 2006
Blair T. Crewther; Justin Keogh; John B. Cronin; Christian J. Cook
The metabolic response to resistance exercise, in particular lactic acid or lactate, has a marked influence upon the muscular environment, which may enhance the training stimulus (e.g. motor unit activation, hormones or muscle damage) and thereby contribute to strength and power adaptation. Hypertrophy schemes have resulted in greater lactate responses (%) than neuronal and dynamic power schemes, suggesting possible metabolic-mediated changes in muscle growth. Factors such as age, sex, training experience and nutrition may also influence the lactate responses to resistance exercise and thereafter, muscular adaptation. Although the importance of the mechanical and hormonal stimulus to strength and power adaptation is well recognised, the contribution of the metabolic stimulus is largely unknown. Relatively few studies for example, have examined metabolic change across neuronal and dynamic power schemes, and not withstanding the fact that those mechanisms underpinning muscular adaptation, in relation to the metabolic stimulus, remain highly speculative. Inconsistent findings and methodological limitations within research (e.g. programme design, sampling period, number of samples) make interpretation further difficult. We contend that strength and power research needs to investigate those metabolic mechanisms likely to contribute to weight-training adaptation. Further research is also needed to examine the metabolic responses to different loading schemes, as well as interactions across age, sex and training status, so our understanding of how to optimise strength and power development is improved.
Sports Medicine | 2011
Blair T. Crewther; Christian J. Cook; Marco Cardinale; Robert P Weatherby; Tim E. Lowe
The aim of this review is to highlight two emerging concepts for the elite athlete using the resistance-training model: (i) the short-term effects of testosterone (T) and cortisol (C) on the neuromuscular system; and (ii) the dose-response training role of these endogenous hormones. Exogenous evidence confirms that T and C can regulate long-term changes in muscle growth and performance, especially with resistance training. This evidence also confirms that changes in T or C concentrations can moderate or support neuromuscular performance through various short-term mechanisms (e.g. second messengers, lipid/protein pathways, neuronal activity, behaviour, cognition, motor-system function, muscle properties and energy metabolism). The possibility of dual T and C effects on the neuromuscular system offers a new paradigm for understanding resistance-training performance and adaptations.Endogenous evidence supports the short-term T and C effects on human performance. Several factors (e.g. workout design, nutrition, genetics, training status and type) can acutely modify T and/or C concentrations and thereby potentially influence resistance-training performance and the adaptive outcomes. This novel short-term pathway appears to be more prominent in athletes (vs non-athletes), possibly due to the training of the neuromuscular and endocrine systems. However, the exact contribution of these endogenous hormones to the training process is still unclear. Research also confirms a dose-response training role for basal changes in endogenous T and C, again, especially for elite athletes. Although full proof within the physiological range is lacking, this athlete model reconciles a proposed permissive role for endogenous hormones in untrained individuals. It is also clear that the steroid receptors (cell bound) mediate target tissue effects by adapting to exercise and training, but the response patterns of the membrane-bound receptors remain highly speculative.This information provides a new perspective for examining, interpreting and utilizing T and C within the elite sporting environment. For example, individual hormonal data may be used to better prescribe resistance exercise and training programmes or to assess the trainability of elite athletes. Possible strategies for acutely modifying the hormonal milieu and, thereafter, the performance/training outcomes were also identified (see above). The limitations and challenges associated with the analysis and interpretation of hormonal research in sport (e.g. procedural issues, analytical methods, research design) were another discussion point. Finally, this review highlights the need for more experimental research on humans, in particular athletes, to specifically address the concept of dual steroid effects on the neuromuscular system.
Frontiers in Endocrinology | 2014
John T. Manning; Liam P. Kilduff; Christian J. Cook; Blair T. Crewther; Bernhard Fink
Digit ratio (2D:4D) denotes the relative length of the second and fourth digits. This ratio is considered to be a biomarker of the balance between fetal testosterone (T) and estrogen (E) in a narrow window of early ontogeny. Evidence for this assertion is derived from direct and indirect measures of prenatal hormonal exposure (in experimental animals, via amniotic fluid samples and in the study of sex-typical traits) in relation to 2D:4D. In contrast, the relationships between 2D:4D and levels of sex steroids in adults are less clear, as many correlational studies of 2D:4D and adult sex steroids have concluded that this association is statistically non-significant. Here, we suggest that in order to understand the link between 2D:4D and sex hormones, one must consider both fetal organizing and adult activating effects of T and E. In particular, we hypothesize that 2D:4D correlates with organizing effects on the endocrine system that moderate activating effects in adulthood. We argue that this is particularly evident in “challenging” conditions such as aggressive and sexual encounters, in which individuals show increased levels of T. We discuss this refinement of the 2D:4D paradigm in relation to the links between 2D:4D and sports performance, and aggression.
Journal of Strength and Conditioning Research | 2008
Blair T. Crewther; John B. Cronin; Justin Keogh; Christian J. Cook
This aim of this study was to examine the free hormone (in saliva) responses to squat workouts performed by recreationally weight-trained males, using either a power (8 sets of 6 reps, 45% 1 repetition maximum [1RM], 3-minute rest periods, ballistic movements), hypertrophy (10 sets of 10 reps, 75% 1RM, 2-minute rest periods, controlled movements), or maximal strength scheme (6 sets of 4 reps, 88% 1RM, 4-minute rest periods, explosive intent). To determine the relative importance of the different training variables, these schemes were equated by workout duration with the power and strength schemes also equated by load volume. Salivary testosterone (T) and cortisol (C) both increased following the hypertrophy scheme (P < 0.05), with little to no hormonal change across the power and maximal strength schemes (P > 0.05). In general, the postexercise T and C responses to the hypertrophy scheme exceeded the other two schemes (P < 0.05). The greater volume of load lifted in the hypertrophy protocol over the same workout duration may explain the endocrine differences observed. The similar T and C responses to the power and maximal strength schemes (of equal volume) support such a view and suggest that differences in load intensity, rest periods, and technique are secondary to volume. Because the acute hormonal responses to resistance exercise contribute to protein metabolism, then load volume may be the most important workout variable activating the endocrine system and stimulating muscle growth.
Journal of Strength and Conditioning Research | 2011
Daniel J. West; Nick Owen; Marc R. Jones; Richard M. Bracken; Christian J. Cook; Dan J. Cunningham; David A. Shearer; Charlotte V. Finn; Robert U. Newton; Blair T. Crewther; Liam P. Kilduff
West, DJ, Owen, NJ, Jones, MR, Bracken, RM, Cook, CJ, Cunningham, DJ, Shearer, DA, Finn, CV, Newton, RU, Crewther, BT, and Kilduff, LP. Relationships between force–time characteristics of the isometric midthigh pull and dynamic performance in professional rugby league players. J Strength Cond Res 25(11): 3070–3075, 2011—There is considerable conflict within the literature regarding the relevance of isometric testing for the assessment of neuromuscular function within dynamic sports. The aim of this study was to determine the relationship between isometric measures of force development and dynamic performance. Thirty-nine professional rugby league players participated in this study. Forty-eight hours after trial familiarization, participants performed a maximal isometric midthigh pull, with ∼120–130° bend at the knee, countermovement jump (CMJ), and a 10-m sprint. Force–time data were processed for peak force (PF), force at 100 milliseconds (F100ms), and peak rate of force development (PRFD). Analysis was carried out using Pearsons product moment correlation with significance set at p < 0.05. The PF was not related to dynamic performance; however, when expressed relative to body weight, it was significantly correlated with both 10-m time and CMJ height (r = −0.37 and 0.45, respectively, p < 0.05). The F100ms was inversely related to 10-m time (r = −0.54, p < 0.01); moreover, when expressed relative to body weight, it was significantly related to both 10-m time and CMJ height (r = −0.68 and 0.43, p < 0.01). In addition, significant correlations were found between PRFD and 10-m time (r = −0.66, p < 0.01) and CMJ height (r = 0.387, p < 0.01). In conclusion, this study provides evidence that measures of maximal strength and explosiveness from isometric force–time curves are related to jump and sprint acceleration performance in professional rugby league players.
Journal of Strength and Conditioning Research | 2009
Blair T. Crewther; Tim E. Lowe; Robert P Weatherby; Nicholas D. Gill; Justin Keogh
Crewther, BT, Lowe, T, Weatherby, RP, Gill, N, and Keogh, J. Neuromuscular performance of elite rugby union players and relationships with salivary hormones. J Strength Cond Res 23(7): 2046-2053, 2009-This study compared the neuromuscular performance (speed, power, strength) of elite rugby union players, by position, and examined the relationship between player performance and salivary hormones, by squad and position. Thirty-four professional male rugby players were assessed for running speed (10-m, 20-m or 30-m sprints), concentric mean (MP) and peak power (PP) during a 70-kg squat jump (SJ) and 50-kg bench press throw (BT), and estimated 1 repetition maximum (1RM) strength for a box squat (BS) and bench press (BP). Tests were performed on separate days with absolute and normalized (power and strength only) values computed. Saliva was collected before each test and assayed for testosterone (Sal-T) and cortisol (Sal-C). In absolute terms, the backs demonstrated greater speed and BT MP, whereas the forwards produced greater SJ PP and MP and BS 1RM (p < 0.01). However, BT, SJ and BS performances were no different when normalized for body mass in kg0.67 (p > 0.05). A comparison (absolute and normalized) of BT PP showed no positional differences (p > 0.05), whereas BP 1RM was greater for the forwards (p < 0.05). These results may be attributed to genetic and/or training factors relating to the positional demands of rugby. The Sal-T and/or Sal-C concentrations of players correlated to speed, power, and strength, especially for the backs (p < 0.05), thereby confirming relationships between neuromuscular performance and hormone secretion patterns. Based on these findings, it was suggested that training to increase whole-body and muscle mass might facilitate general performance improvements. Training prescription might also benefit from acute and chronic hormone monitoring to identify those individuals likely to respond more to hormonal change.
Journal of Strength and Conditioning Research | 2011
Blair T. Crewther; Liam P. Kilduff; Christian J. Cook; Matt K Middleton; Paul J. Bunce; Guang-Zhong Yang
Crewther, BT, Kilduff, LP, Cook, CJ, Middleton, MK, Bunce, PJ, and Yang, G-Z. The acute potentiating effects of back squats on athlete performance. J Strength Cond Res 25(12): 3319–3325, 2011—This study examined the acute potentiating effects of back squats on athlete performance with a specific focus on movement specificity and the individual timing of potentiation. Nine subelite male rugby players performed 3 protocols on separate occasions using a randomized, crossover, and counterbalanced design. Each protocol consisted of performance testing before a single set of 3 repetition maximum (3RM) back squats, followed by retesting at ∼15 seconds, 4, 8, 12, and 16 minutes. The 3 tests were countermovement jumps (CMJs), sprint performance (5 and 10 m), and 3-m horizontal sled pushes with a 100-kg load. Relationships between the individual changes in salivary testosterone and cortisol concentrations and performance were also examined. The 3RM squats significantly (p < 0.001) improved CMJ height at 4 (3.9 ± 1.9%), 8 (3.5 ± 1.5%), and 12 (3.0 ± 1.4%) minutes compared with baseline values, but no temporal changes in sprinting and sled times were identified. On an individual level, the peak relative changes in CMJ height (6.4 ± 2.1%, p < 0.001) were greater than the 3-m sled (1.4 ± 0.6%), 5-m (2.6 ± 1.0%), and 10-m sprint tests (1.8 ± 1.0%). In conclusion, a single set of 3RM squats was found effective in acutely enhancing CMJ height in the study population, especially when the recovery period was individualized for each athlete. The study results also suggest that the potentiating effects of squats may exhibit some degree of movement specificity, being greater for those exercises with similar movement patterns. The current findings have practical implications for prescribing warm-up exercises, individualizing training programs, and for interpreting postactivation potentiation research.
International Journal of Sports Medicine | 2011
Blair T. Crewther; Liam P. Kilduff; Daniel J. Cunningham; Christian J. Cook; Nick Owen; Guang-Zhong Yang
This study examined the validity of 2 kinematic systems for estimating force and power during squat jumps. 12 weight-trained males each performed single repetition squat jumps with a 20-kg, 40-kg, 60-kg and 80-kg load on a Kistler portable force plate. A commercial linear position transducer (Gymaware [GYM]) and accelerometer (Myotest® [MYO]) were attached to the bar to assess concentric peak force (PF) and peak power (PP). Across all loads tested, the GYM and MYO estimates of PF and PP were moderately to strongly correlated ( P≤0.05-0.001) with the force plate measurements ( R=0.59-0.87 and R=0.66-0.97), respectively. The mean PF and PP values were not significantly different between the 2 kinematic systems and the force plate, but the estimates did produce some systematic bias and relatively large random errors, especially with the 20-kg load (PF bias >170 N, PF error >335 N, PP bias >400 W, PP error >878 W). Some proportional bias was also identified. In summary, the estimation of PF and PP by a linear position transducer and accelerometer showed moderate to strong relative validity and equivalent absolute validity, but these estimates are limited by the presence of bias and large random errors.
Hormones and Behavior | 2012
Christian J. Cook; Blair T. Crewther
Previous studies have shown that visual images can produce rapid changes in testosterone concentrations. We explored the acute effects of video clips on salivary testosterone and cortisol concentrations and subsequent voluntary squat performance in highly trained male athletes (n=12). Saliva samples were collected on 6 occasions immediately before and 15 min after watching a brief video clip (approximately 4 min in duration) on a computer screen. The watching of a sad, erotic, aggressive, training motivational, humorous or a neutral control clip was randomised. Subjects then performed a squat workout aimed at producing a 3 repetition maximum (3RM) lift. Significant (P<0.001) relative (%) increases in testosterone concentrations were noted with watching the erotic, humorous, aggressive and training videos (versus control and sad), with testosterone decreasing significantly (versus control) after the sad clip. The aggressive video also produced an elevated cortisol response (% change) and more so than the control and humorous videos (P<0.001). A significant (P<0.003) improvement in 3RM performance was noted after the erotic, aggressive and training clips (versus control). A strong within-individual correlation (mean r=0.85) was also noted between the relative changes in testosterone and the 3RM squats across all video sessions (P<0.001). In conclusion, different video clips were associated with different changes in salivary free hormone concentrations and the relative changes in testosterone closely mapped 3RM squat performance in a group of highly trained males. Thus, speculatively, using short video presentations in the pre-workout environment offers an opportunity for understanding the outcomes of hormonal change, athlete behaviour and subsequent voluntary performance.
Physiology & Behavior | 2012
Christian J. Cook; Blair T. Crewther
We examined the effect of different pre-match motivational interventions on athlete free testosterone (T) and cortisol (C) concentrations and subsequent match performance in professional rugby union. Male participants (n=12) playing at a senior or academy level in rugby union were recruited and each completed three interventions (15 min each) before a competitive game; 1) watching a video clip of successful skill execution by the player with positive coach feedback [VPCF1]; 2) watching a video clip of successful skill execution by an opposing player with cautionary coach feedback [VCCF], 3) the player left alone to self-motivate [SM1]. The first and last interventions were retested [VPCF2 and SM2]. Salivary free T and C measures were taken pre-intervention and pre-game. Within each game, players were rated by coaching staff on a key performance indicator (KPI) from identified skills and an overall performance indicator (OPI), where 1 = best performance to 5 = worst performance. The VPCF1 and VPCF2 interventions both promoted significant T responses (11.8% to 12.5%) before each game and more so than SM1, SM2 and VCCF. The VCCF approach produced the largest C response (17.6%) and this differed from all other treatments. The VPCF interventions were also associated with better game KPI (1.5 to 1.8) and OPI ratings (1.7 to 1.8) than SM1, SM2 and/or VCCF. Across all treatments, greater individual T responses and lower C responses were associated with better KPI and OPI outcomes. In conclusion, the pre-game presentation of motivational strategies to athletes involving specific video footage and coach feedback produced different outcomes on two indicators of match performance, which were also associated with changes in free hormonal state.