Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blaise Lobo is active.

Publication


Featured researches published by Blaise Lobo.


SOLID STATE PHYSICS: Proceedings of the 59th DAE Solid State Physics Symposium#N#2014 | 2015

Optical, electrical, thermal properties of cadmium chloride doped PVA – PVP blend

Basavarajeshwari M. Baraker; Preeti B. Hammannavar; Blaise Lobo

Films of polyvinylalcohol (PVA) – polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl2) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) caused by the dopant (CdCl2). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.


SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013 | 2014

Optical and electrical properties of cobalt chloride doped polyvinylalcohol polyvinylpyrrolidone blend

Ravikumar V. Patil; M. R. Ranganath; Blaise Lobo

Films of Cobalt Chloride Doped Polyvinylalcohol - Polyvinylpyrrolidone blend were prepared by solution casting method, in the doping range 0 wt% up to 42 wt%. These films were characterized by XRD, UV-Visible spectrometry, FTIR, thermal analysis and electrical measurements. The films were semi-crystalline, with an average crystallite size of few nanometers. The optical band gap due to indirect allowed transitions (in k-space) decreases from 4.6 eV for 1.5 wt% doping level to 4.0 eV at 35 wt% doping level. In addition, absorption peaks were observed at 2.3 eV, 3.0 eV and 1.7 eV, which indicate that doping results in formation of allowed energy bands within the forbidden gap. The Urbach energy, which measures the width of band tails within the forbidden gap, is found to significantly decrease with increase in doping level. DC electrical measurements show a good fit for 3-D Variable Range Hopping model of conductivity. The temperature variation of electrical resistivity obeys the Arrhenius relation, from whi...


Archive | 2018

Conductivity measurements on CdCl2 doped PVA solid polymeric electrolyte for battery application

Basavarajeshwari M. Baraker; Blaise Lobo

Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.


Fibers and Polymers | 2018

Mechanical and Dynamic Mechanical Studies on Epoxy-Cobaltous Sulfate Polymer Hybrids

Shruti S. Devangamath; Blaise Lobo; Saraswati P. Masti; Shivayogi Narasagoudr

Cobaltous sulfate heptahydrate (CoSO4·7H2O) was incorporated as filler into diglycidyl ether of bisphenol A (DGEBA) based epoxy resin system, to prepare organic-inorganic polymer hybrid materials. Mechanical tensile studies and dynamic mechanical analysis (DMA) were carried out in order to study the static and dynamic mechanical properties of the prepared hybrid films. Mechanical tensile studies were carried out at room temperature, at a test speed of 30 mm/min. Highest tensile strength of 24.74±2.42 MPa was achieved for 4.44 wt% filler level (FL), along with an increase in the value of Young’s modulus. Storage modulus (E′), loss modulus (E″), damping factor (tan δ) were obtained by DMA studies. Glass transition temperature (Tg) was obtained for pure epoxy and filled epoxy, for various FLs varying from 0.28 wt% to 5.00 wt%. Pure epoxy showed highest Tg value compared to filled epoxy hybrids. Highest storage modulus of 9.5 GPa was obtained for 2.22 wt% FL, which also showed highest loss modulus peak. Parameters like effectiveness coefficient (C) and crosslink density were calculated from the storage modulus data. Loss modulus and tan δ curves were analyzed to study the energy dissipation properties of prepared hybrid films. Activation energy (Ea) value for glass transition was obtained from damping factor (tan δ), which showed highest Ea value of 630.5 kJmol-1, for 4.44 wt% FL. DMA studies for various FLs were carried out at different test frequencies in order to study the changes in dynamic mechanical properties of the prepared hybrid materials with respect to frequency


AIP Conference Proceedings | 2018

Optical, structural and thermal properties of bismuth nitrate doped polycarbonate composite

Rajeshwari Mirji; Blaise Lobo

Bismuth nitrate (Bi(NO3)3) doped polycarbonate (PC) films were prepared by solution casting method, in the doping range varying from 0.1 wt% to 5 wt %. The prepared samples were characterized using UV-Visible spectroscopy, X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). Optical band gap was calculated by analyzing the UV-Visible spectra of pure as well as doped PC. Optical band gap is found to decrease from 4.38 eV to 4.33 eV as the Bi(NO3)3 content within PC increases. XRD patterns showed an increase in the degree of crystallinity of Bi(NO3)3 doped PC, especially at 3.5 wt% and 5 wt%. DSC study showed an increase in the degradation temperature, as the doping level is increased from 0 wt% up to 0.3 wt%. A decrease in Tg is observed as the doping level of these samples increases from 0 wt% up to 5 wt%.


Journal of Physics: Conference Series | 2015

PLT and DBAR Investigations on MPDMAPP Doped PVA/PVP Blend

R. F. Bhajantri; V. Ravindrachary; Blaise Lobo; P. K. Pujari; Sunil G. Rathod; Jagadish Naik; Vidyashree Hebbar; H Chandrappa

Poly(vinylalcohol) (PVA)/Poly(vinylpyrrolidone) (PVP) blend films, doped with chalcone derivative (1-(4-methylphenyl)-3-(4-N,N,dimethylaminophenyl)-2-propen-1-one) (MPDMAPP) from 0.025 wt% up to 1 wt% were prepared using solution casting technique. The o-Ps lifetime τ3 is found to change little, from 1.61 ns at 0.025 wt% dopant concentration to 1.63 ns at 0.5 wt% dopant level, but drops to 1.4 ns at 1 wt% dopant concentration, indicating the onset of phase separation. The S-parameter of DBAR was found to be linearly related to the ortho-Positronium(o-Ps) intensity I3. The S-parameter drops significantly from 0.1 wt% up to 1 wt% doping concentration. This is supported by the XRD scans.


Journal of Physics: Conference Series | 2015

DBAR investigation on films of polypyrrole incorporated polyvinylalcohol doped with ferric chloride

Blaise Lobo; B M Baraker; P B Hammannavar; R. F. Bhajantri; M R Ranganath; M Hurkadli; V. Ravindrachary

Flexible films of pyrrole(Py) sorbed, ferric chloride (FeCl3) doped polyvinylalcohol(PVA) were prepared by solution casting. The films were characterized by XRD, UV-Visible spectrometry, Thermal Analysis (DSC, DTA/TGA), FTIR and electrical measurements. In this paper, the results of Doppler Broadening of Annihilation Radiation (DBAR) spectra in the doping range, from 4 wt% up to 18 wt%, are discussed. The XRD and DSC scans complement the DBAR results. The computed S- parameter and W -parameter reflect changes in the degree of crystallinity and the average crystallite size, respectively, of polypyrrole(PPy) incorporated PVA samples doped with ferric chloride.


Journal of Physics: Conference Series | 2015

DBS investigation on films of cobalt chloride doped PVA-PVP blend

Preeti B. Hammannavar; Basavarajeshwari M. Baraker; R. F. Bhajantri; V. Ravindrachary; Blaise Lobo

Films of Cobalt Chloride (CoCl2) doped polyvinylalcohol(PVA)- polyvinylpyrrolidone(PVP) blend (doped from 0.5 wt% up to 28 wt%) were prepared by solution casting, and characterized by XRD, DSC, UV-Visible Spectrometry TGA, FTIR and electrical measurements. In this paper, the results of Doppler Broadening Spectroscopy (DBS) in CoCl2 doped PVA-PVP blend is discussed. An increase in crystallinity of PVA-PVP blend, is observed, on doping it with CoCl2. The DBS results are complemented by XRD and DSC scans.


SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012 | 2013

Electrical and optical properties of ferric doped PVA-PVP-PPy composite films

Ravikumar V. Patil; M. R. Ranganath; Blaise Lobo

The analysis of experimental optical spectra & electrical properties of PVA-PVP-PPy composite films is discussed in this paper. The optical parameters like activation energy of optical transitions and the optical band gap for direct and indirect allowed transitions were determined for PVA-PVP-PPy composite films doped with different concentrations of ferric chloride. The optical band gap showed best fit for indirect allowed transitions, and there is a decrease in the optical band gap with increase in concentration of ferric chloride. The DC electrical properties of these films indicated agreement with Mott’s Variable Range Hopping Model in three dimensions. The width of the forbidden band gap was determined from the Arrhenius relation after experimentally studying in-situ, the variation of DC electrical conductivity with temperature.


INTERNATIONAL CONFERENCE ON ADVANCES IN CONDENSED AND NANO MATERIALS (ICACNM‐2011) | 2011

Preparation and Thermal Analysis of Ferric Doped PVA‐PVP‐PPy Composite Films

Ravikumar V. Patil; M. R. Ranganath; Blaise Lobo

The preparation and thermal analysis of flexible blend films of pyrrole (Py) polymerized in aqueous solution of poly (vinyl alcohol) (PVA) and poly (vinyl pyrrolidone) (PVP) is described. In‐situ polymerization of pyrrole in aqueous solution of PVA and PVP containing ferric chloride (FeCl3) was achieved through vapor sorption, and the films obtained were studied using Differential Scanning Calorimetry (DSC), Thermo‐Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA). No melting endotherm is seen in the DSC and DTA scans of the composite films, indicating that the sample is amorphous. Degradation of the sample is found to occur at lower temperatures, with increase in doping level (wt% of FeCl3). DSC study was performed between 40 °C and 400 °C. Below 1.2 wt % DL, degradation of the sample occurs in two stages, the first at 310 °C and the second at 440 °C, as seen from DTA and TGA scans. The broad endotherm between 80 °C and 120 °C is due to volatization of moisture (water) absorbed by the sa...

Collaboration


Dive into the Blaise Lobo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge