Blake C. Meyers
Donald Danforth Plant Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blake C. Meyers.
The Plant Cell | 2003
Blake C. Meyers; Alexander Kozik; Alyssa Griego; Hanhui Kuang; Richard W. Michelmore
The Arabidopsis genome contains ∼200 genes that encode proteins with similarity to the nucleotide binding site and other domains characteristic of plant resistance proteins. Through a reiterative process of sequence analysis and reannotation, we identified 149 NBS-LRR–encoding genes in the Arabidopsis (ecotype Columbia) genomic sequence. Fifty-six of these genes were corrected from earlier annotations. At least 12 are predicted to be pseudogenes. As described previously, two distinct groups of sequences were identified: those that encoded an N-terminal domain with Toll/Interleukin-1 Receptor homology (TIR-NBS-LRR, or TNL), and those that encoded an N-terminal coiled-coil motif (CC-NBS-LRR, or CNL). The encoded proteins are distinct from the 58 predicted adapter proteins in the previously described TIR-X, TIR-NBS, and CC-NBS groups. Classification based on protein domains, intron positions, sequence conservation, and genome distribution defined four subgroups of CNL proteins, eight subgroups of TNL proteins, and a pair of divergent NL proteins that lack a defined N-terminal motif. CNL proteins generally were encoded in single exons, although two subclasses were identified that contained introns in unique positions. TNL proteins were encoded in modular exons, with conserved intron positions separating distinct protein domains. Conserved motifs were identified in the LRRs of both CNL and TNL proteins. In contrast to CNL proteins, TNL proteins contained large and variable C-terminal domains. The extant distribution and diversity of the NBS-LRR sequences has been generated by extensive duplication and ectopic rearrangements that involved segmental duplications as well as microscale events. The observed diversity of these NBS-LRR proteins indicates the variety of recognition molecules available in an individual genotype to detect diverse biotic challenges.
The Plant Cell | 2008
Blake C. Meyers; Michael J. Axtell; Bonnie Bartel; David P. Bartel; David C. Baulcombe; John L. Bowman; Xiaofeng Cao; James C. Carrington; Xuemei Chen; Pamela J. Green; Sam Griffiths-Jones; Steven E. Jacobsen; Allison C. Mallory; Robert A. Martienssen; R. Scott Poethig; Yijun Qi; Hervé Vaucheret; Olivier Voinnet; Yuichiro Watanabe; Detlef Weigel; Jian-Kang Zhu
MicroRNAs (miRNAs) are ∼21 nucleotide noncoding RNAs produced by Dicer-catalyzed excision from stem-loop precursors. Many plant miRNAs play critical roles in development, nutrient homeostasis, abiotic stress responses, and pathogen responses via interactions with specific target mRNAs. miRNAs are not the only Dicer-derived small RNAs produced by plants: A substantial amount of the total small RNA abundance and an overwhelming amount of small RNA sequence diversity is contributed by distinct classes of 21- to 24-nucleotide short interfering RNAs. This fact, coupled with the rapidly increasing rate of plant small RNA discovery, demands an increased rigor in miRNA annotations. Herein, we update the specific criteria required for the annotation of plant miRNAs, including experimental and computational data, as well as refinements to standard nomenclature.
Nature | 2009
Brian J. Haas; Sophien Kamoun; Michael C. Zody; Rays H. Y. Jiang; Robert E. Handsaker; Liliana M. Cano; Manfred Grabherr; Chinnappa D. Kodira; Sylvain Raffaele; Trudy Torto-Alalibo; Tolga O. Bozkurt; Audrey M. V. Ah-Fong; Lucia Alvarado; Vicky L. Anderson; Miles R. Armstrong; Anna O. Avrova; Laura Baxter; Jim Beynon; Petra C. Boevink; Stephanie R. Bollmann; Jorunn I. B. Bos; Vincent Bulone; Guohong Cai; Cahid Cakir; James C. Carrington; Megan Chawner; Lucio Conti; Stefano Costanzo; Richard Ewan; Noah Fahlgren
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world’s population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at
Nature Biotechnology | 2008
Marcelo A German; Manoj Pillay; Dong-Hoon Jeong; Amit Hetawal; Shujun Luo; Prakash Janardhanan; Vimal Kannan; Linda A. Rymarquis; Kan Nobuta; Rana German; Emanuele De Paoli; Cheng Lu; Gary P. Schroth; Blake C. Meyers; Pamela J. Green
6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for ∼74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Nature Genetics | 2006
Ian R. Henderson; Xiaoyu Zhang; Cheng Lu; Lianna M. Johnson; Blake C. Meyers; Pamela J. Green; Steven E. Jacobsen
MicroRNAs (miRNAs) are important regulatory molecules in most eukaryotes and identification of their target mRNAs is essential for their functional analysis. Whereas conventional methods rely on computational prediction and subsequent experimental validation of target RNAs, we directly sequenced >28,000,000 signatures from the 5′ ends of polyadenylated products of miRNA-mediated mRNA decay, isolated from inflorescence tissue of Arabidopsis thaliana, to discover novel miRNA–target RNA pairs. Within the set of ∼27,000 transcripts included in the 8,000,000 nonredundant signatures, several previously predicted but nonvalidated targets of miRNAs were found. Like validated targets, most showed a single abundant signature at the miRNA cleavage site, particularly in libraries from a mutant deficient in the 5′-to-3′ exonuclease AtXRN4. Although miRNAs in Arabidopsis have been extensively investigated, working in reverse from the cleaved targets resulted in the identification and validation of novel miRNAs. This versatile approach will affect the study of other aspects of RNA processing beyond miRNA–target RNA pairs.
The Plant Cell | 1998
Blake C. Meyers; Doris B. Chin; Katherine A. Shen; Subramoniam Sivaramakrishnan; Dean O. Lavelle; Zhen Zhang; Richard W. Michelmore
Small RNAs have several important biological functions. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1–DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.
The Plant Cell | 1998
Blake C. Meyers; Katherine A. Shen; Pejaman Rohani; Brandon S. Gaut; Richard W. Michelmore
At least 10 Dm genes conferring resistance to the oomycete downy mildew fungus Bremia lactucae map to the major resistance cluster in lettuce. We investigated the structure of this cluster in the lettuce cultivar Diana, which contains Dm3. A deletion breakpoint map of the chromosomal region flanking Dm3 was saturated with a variety of molecular markers. Several of these markers are components of a family of resistance gene candidates (RGC2) that encode a nucleotide binding site and a leucine-rich repeat region. These motifs are characteristic of plant disease resistance genes. Bacterial artificial chromosome clones were identified by using duplicated restriction fragment length polymorphism markers from the region, including the nucleotide binding site–encoding region of RGC2. Twenty-two distinct members of the RGC2 family were characterized from the bacterial artificial chromosomes; at least two additional family members exist. The RGC2 family is highly divergent; the nucleotide identity was as low as 53% between the most distantly related copies. These RGC2 genes span at least 3.5 Mb. Eighteen members were mapped on the deletion breakpoint map. A comparison between the phylogenetic and physical relationships of these sequences demonstrated that closely related copies are physically separated from one another and indicated that complex rearrangements have shaped this region. Analysis of low-copy genomic sequences detected no genes, including RGC2, in the Dm3 region, other than sequences related to retrotransposons and transposable elements. The related but divergent family of RGC2 genes may act as a resource for the generation of new resistance phenotypes through infrequent recombination or unequal crossing over.
Nucleic Acids Research | 2006
Mayumi Nakano; Kan Nobuta; Kalyan Vemaraju; Shivakundan Singh Tej; Jeremy W. Skogen; Blake C. Meyers
Disease resistance genes in plants are often found in complex multigene families. The largest known cluster of disease resistance specificities in lettuce contains the RGC2 family of genes. We compared the sequences of nine full-length genomic copies of RGC2 representing the diversity in the cluster to determine the structure of genes within this family and to examine the evolution of its members. The transcribed regions range from at least 7.0 to 13.1 kb, and the cDNAs contain deduced open reading frames of ~5.5 kb. The predicted RGC2 proteins contain a nucleotide binding site and irregular leucine-rich repeats (LRRs) that are characteristic of resistance genes cloned from other species. Unique features of the RGC2 gene products include a bipartite LRR region with >40 repeats. At least eight members of this family are transcribed. The level of sequence diversity between family members varied in different regions of the gene. The ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitutions was lowest in the region encoding the nucleotide binding site, which is the presumed effector domain of the protein. The LRR-encoding region showed an alternating pattern of conservation and hypervariability. This alternating pattern of variation was also found in all comparisons within families of resistance genes cloned from other species. The Ka/Ks ratios indicate that diversifying selection has resulted in increased variation at these codons. The patterns of variation support the predicted structure of LRR regions with solvent-exposed hypervariable residues that are potentially involved in binding pathogen-derived ligands.
Science | 2010
Sylvain Raffaele; Rhys A. Farrer; Liliana M. Cano; David J. Studholme; Daniel MacLean; Marco Thines; Rays H. Y. Jiang; Michael C. Zody; Sridhara G. Kunjeti; Nicole M. Donofrio; Blake C. Meyers; Chad Nusbaum; Sophien Kamoun
MPSS (massively parallel signature sequencing) is a sequencing-based technology that uses a unique method to quantify gene expression level, generating millions of short sequence tags per library. We have created a series of databases for four species (Arabidopsis, rice, grape and Magnaporthe grisea, the rice blast fungus). Our MPSS databases measure the expression level of most genes under defined conditions and provide information about potentially novel transcripts (antisense transcripts, alternative splice isoforms and regulatory intergenic transcripts). A modified version of MPSS has been used to perform deep profiling of small RNAs from Arabidopsis, and we have recently adapted our database to display these data. Interpretation of the small RNA MPSS data is facilitated by the inclusion of extensive repeat data in our genome viewer. All the data and the tools introduced in this article are available at .
The Plant Cell | 2004
Hanhui Kuang; Sung Sick Woo; Blake C. Meyers; Eviatar Nevo; Richard W. Michelmore
From Blight to Powdery Mildew Pathogenic effects of microbes on plants have widespread consequences. Witness, for example, the cultural upheavals driven by potato blight in the 1800s. A variety of microbial pathogens continue to afflict crop plants today, driving both loss of yield and incurring the increased costs of control mechanisms. Now, four reports analyze microbial genomes in order to understand better how plant pathogens function (see the Perspective by Dodds). Raffaele et al. (p. 1540) describe how the genome of the potato blight pathogen accommodates transfer to different hosts. Spanu et al. (p. 1543) analyze what it takes to be an obligate biotroph in barley powdery mildew, and Baxter et al. (p. 1549) ask a similar question for a natural pathogen of Arabidopsis. Schirawski et al. (p. 1546) compared genomes of maize pathogens to identify virulence determinants. Better knowledge of what in a genome makes a pathogen efficient and deadly is likely to be useful for improving agricultural crop management and breeding. A group of papers analyzes pathogen genomes to find the roots of virulence, opportunism, and life-style determinants. Many plant pathogens, including those in the lineage of the Irish potato famine organism Phytophthora infestans, evolve by host jumps followed by specialization. However, how host jumps affect genome evolution remains largely unknown. To determine the patterns of sequence variation in the P. infestans lineage, we resequenced six genomes of four sister species. This revealed uneven evolutionary rates across genomes with genes in repeat-rich regions showing higher rates of structural polymorphisms and positive selection. These loci are enriched in genes induced in planta, implicating host adaptation in genome evolution. Unexpectedly, genes involved in epigenetic processes formed another class of rapidly evolving residents of the gene-sparse regions. These results demonstrate that dynamic repeat-rich genome compartments underpin accelerated gene evolution following host jumps in this pathogen lineage.