Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blake Lee Neubauer is active.

Publication


Featured researches published by Blake Lee Neubauer.


Cancer Research | 2005

The Protein Kinase Cβ–Selective Inhibitor, Enzastaurin (LY317615.HCl), Suppresses Signaling through the AKT Pathway, Induces Apoptosis, and Suppresses Growth of Human Colon Cancer and Glioblastoma Xenografts

Jeremy R. Graff; Ann M. McNulty; Kimberly R. Hanna; Bruce W. Konicek; Rebecca L. Lynch; Spring N. Bailey; Crystal Banks; Andrew Capen; Robin L. Goode; Jason E. Lewis; Lillian Sams; Karen L. Huss; Robert M. Campbell; Philip W. Iversen; Blake Lee Neubauer; Thomas J. Brown; Luna Musib; Sandaruwan Geeganage; Donald Thornton

Activation of protein kinase Cbeta (PKCbeta) has been repeatedly implicated in tumor-induced angiogenesis. The PKCbeta-selective inhibitor, Enzastaurin (LY317615.HCl), suppresses angiogenesis and was advanced for clinical development based upon this antiangiogenic activity. Activation of PKCbeta has now also been implicated in tumor cell proliferation, apoptosis, and tumor invasiveness. Herein, we show that Enzastaurin has a direct effect on human tumor cells, inducing apoptosis and suppressing the proliferation of cultured tumor cells. Enzastaurin treatment also suppresses the phosphorylation of GSK3betaser9, ribosomal protein S6(S240/244), and AKT(Thr308). Oral dosing with Enzastaurin to yield plasma concentrations similar to those achieved in clinical trials significantly suppresses the growth of human glioblastoma and colon carcinoma xenografts. As in cultured tumor cells, Enzastaurin treatment suppresses the phosphorylation of GSK3beta in these xenograft tumor tissues. Enzastaurin treatment also suppresses GSK3beta phosphorylation to a similar extent in peripheral blood mononuclear cells (PBMCs) from these treated mice. These data show that Enzastaurin has a direct antitumor effect and that Enzastaurin treatment suppresses GSK3beta phosphorylation in both tumor tissue and in PBMCs, suggesting that GSK3beta phosphorylation may serve as a reliable pharmacodynamic marker for Enzastaurin activity. With previously published reports, these data support the notion that Enzastaurin suppresses tumor growth through multiple mechanisms: direct suppression of tumor cell proliferation and the induction of tumor cell death coupled to the indirect effect of suppressing tumor-induced angiogenesis.


Journal of Clinical Investigation | 2007

Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity

Jeremy R. Graff; Bruce W. Konicek; Thomas M. Vincent; Rebecca L. Lynch; David Monteith; Spring Weir; Phil Schwier; Andrew Capen; Robin L. Goode; Michele Dowless; Yuefeng Chen; Hong Zhang; Sean Sissons; Karen Cox; Ann M. McNulty; Stephen Parsons; Tao Wang; Lillian Sams; Sandaruwan Geeganage; Larry E. Douglass; Blake Lee Neubauer; Nicholas M. Dean; Kerry Blanchard; Jianyong Shou; Louis Stancato; Julia H. Carter; Eric G. Marcusson

Expression of eukaryotic translation initiation factor 4E (eIF4E) is commonly elevated in human and experimental cancers, promoting angiogenesis and tumor growth. Elevated eIF4E levels selectively increase translation of growth factors important in malignancy (e.g., VEGF, cyclin D1) and is thereby an attractive anticancer therapeutic target. Yet to date, no eIF4E-specific therapy has been developed. Herein we report development of eIF4E-specific antisense oligonucleotides (ASOs) designed to have the necessary tissue stability and nuclease resistance required for systemic anticancer therapy. In mammalian cultured cells, these ASOs specifically targeted the eIF4E mRNA for destruction, repressing expression of eIF4E-regulated proteins (e.g., VEGF, cyclin D1, survivin, c-myc, Bcl-2), inducing apoptosis, and preventing endothelial cells from forming vessel-like structures. Most importantly, intravenous ASO administration selectively and significantly reduced eIF4E expression in human tumor xenografts, significantly suppressing tumor growth. Because these ASOs also target murine eIF4E, we assessed the impact of eIF4E reduction in normal tissues. Despite reducing eIF4E levels by 80% in mouse liver, eIF4E-specific ASO administration did not affect body weight, organ weight, or liver transaminase levels, thereby providing the first in vivo evidence that cancers may be more susceptible to eIF4E inhibition than normal tissues. These data have prompted eIF4E-specific ASO clinical trials for the treatment of human cancers.


Molecular Cancer Research | 2005

The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation.

Rebecca L. Lynch; Bruce W. Konicek; Ann M. McNulty; Kimberly R. Hanna; Jason E. Lewis; Blake Lee Neubauer; Jeremy R. Graff

The progression of human prostate cancer from the initial androgen-dependent phase to androgen independence involves diminished apoptosis and a release from the cell cycle block triggered by androgen ablation therapy. FOXO transcription factors play a central role in promoting expression of proapoptotic and cell cycle regulatory genes (e.g., FasL and p27KIP1). Reduced FOXO function might, therefore, play a role in androgen-independent progression of human prostate cancer. Herein, we show that FOXO function is compromised in androgen-independent prostate cancer cells (LNAI) versus androgen-dependent LNCaP cells. The FOXO3a protein, the most highly expressed FOXO family member in prostate cancer cells, is hyperphosphorylated in LNAI cells. FOXO3a expression is also markedly reduced in these androgen-independent LNAI cells when compared with parental LNCaP cells. Together, reduced FOXO3a expression coupled to FOXO3a hyperphosphorylation would suppress FOXO transcriptional activity. Accordingly, activity of the FOXO-responsive p27KIP1 promoter is reduced 60% in these LNAI cells when compared with LNCaP cells. Moreover, mutation of a conserved FOXO response element suppresses p27KIP1 promoter activity, substantiating a regulatory role for this FOXO response element in p27KIP1 promoter transactivation. Finally, we show that the activity of a distinct FOXO-responsive promoter, the 3X-IRS promoter, is also reduced in LNAI cells. Collectively, these data show that reduced FOXO3a expression coupled to increased FOXO3a phosphorylation coincide with reduced FOXO-responsive promoter activity in androgen-independent LNAI cells when compared with androgen-dependent LNCaP cells. To the extent that this model reflects human disease, these data suggest that FOXO function may be compromised with androgen-independent progression of human prostate cancer.


Molecular Cancer Therapeutics | 2008

High-content imaging characterization of cell cycle therapeutics through in vitro and in vivo subpopulation analysis.

Jonathan Low; Shuguang Huang; Wayne Blosser; Michele Dowless; John Burch; Blake Lee Neubauer; Louis Stancato

Although the cycling of eukaryotic cells has long been a primary focus for cancer therapeutics, recent advances in imaging and data analysis allow even further definition of cellular events as they occur in individual cells and cellular subpopulations in response to treatment. High-content imaging (HCI) has been an effective tool to elucidate cellular responses to a variety of agents; however, these data were most frequently observed as averages of the entire captured population, unnecessarily decreasing the resolution of each assay. Here, we dissect the eukaryotic cell cycle into individual cellular subpopulations using HCI in conjunction with unsupervised K-means clustering. We generate distinct phenotypic fingerprints for each major cell cycle and mitotic compartment and use those fingerprints to screen a library of 310 commercially available chemotherapeutic agents. We determine that the cell cycle arrest phenotypes caused by these agents are similar to, although distinct from, those found in untreated cells and that these distinctions frequently suggest the mechanism of action. We then show via subpopulation analysis that these arrest phenotypes are similar in both mouse models and in culture. HCI analysis of cell cycle using data obtained from individual cells under a broad range of research conditions and grouped into cellular subpopulations represents a powerful method to discern both cellular events and treatment effects. In particular, this technique allows for a more accurate means of assessing compound selectivity and leads to more meaningful comparisons between so-called targeted therapeutics. [Mol Cancer Ther 2008;7(8):2455–63]


Journal of Medicinal Chemistry | 1993

Nonsteroidal inhibitors of human type I steroid 5-.alpha.-reductase

Charles David Jones; James E. Audia; David Ernest Lawhorn; Loretta Ames Mcquaid; Blake Lee Neubauer; Andrew Pike; Pamela A. Pennington; Nancy B. Stamm; Richard E. Toomey; Kenneth Steven Hirsch


Journal of the National Cancer Institute | 1999

Growth Regulation of Prostatic Stromal Cells by Prostate-Specific Antigen

Debra M. Sutkowski; Robin L. Goode; Jack Baniel; Carroll Teater; Pinchas Cohen; Ann M. McNulty; Hansen M. Hsiung; Gerald W. Becker; Blake Lee Neubauer


Cancer Research | 1992

Comparative Antitumor Effects of Hormonal Ablation, Estrogen Agonist, Estrogen Cytotoxic Derivative, and Antiestrogen in the PAIII Rat Prostatic Adenocarcinoma

Blake Lee Neubauer; Kevin L. Best; Robin L. Goode; Mark L. Heiman; Dennis M. Hoover; David W. Robertson; Michael F. Sarosdy; Carl Joseph Shaar; Lee R. Tanzer; Ronald L. Merriman


Biology of Reproduction | 1990

Inhibition of experimentally induced mouse prostatic hyperplasia by castration or steroid antagonist administration.

Robert A. Sikes; Sharon L. Thomsen; Vladimir Petrow; Blake Lee Neubauer; Leland W.K. Chung


The Prostate | 1991

In vivo assay for conversion of testosterone to dihydrotestosterone by rat prostatic steroid 5α-reductase and comparison of two inhibitors

Richard E. Toomey; Robin L. Goode; Vladimir Petrow; Blake Lee Neubauer


Archive | 1997

Inhibitors of the enzymatic activity of psa

Benjamin Alan Anderson; Gerald W. Becker; James A. Carty; Nancy Kay Harn; Lowell D. Hatfield; Blake Lee Neubauer; John Robert Rizzo; Tony Y. Zhang

Collaboration


Dive into the Blake Lee Neubauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge