Blake Riggs
San Francisco State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blake Riggs.
Journal of Cell Biology | 2003
Blake Riggs; Wendy F. Rothwell; Sarah Mische; Gilles R.X. Hickson; Johanne Matheson; Thomas S. Hays; Gwyn W. Gould; William Sullivan
Cytokinesis requires a dramatic remodeling of the cortical cytoskeleton as well as membrane addition. The Drosophila pericentrosomal protein, Nuclear-fallout (Nuf), provides a link between these two processes. In nuf-derived embryos, actin remodeling and membrane recruitment during the initial stages of metaphase and cellular furrow formation are disrupted. Nuf is a homologue of arfophilin-2, an ADP ribosylation factor effector that binds Rab11 and influences recycling endosome (RE) organization. Here, we show that Nuf is an important component of the RE, and that these phenotypes are a consequence of Nuf activities at the RE. Nuf exhibits extensive colocalization with Rab11, a key RE component. GST pull-downs and the presence of a conserved Rab11-binding domain in Nuf demonstrate that Nuf and Rab11 physically associate. In addition, Nuf and Rab11 are mutually required for their localization to the RE. Embryos with reduced levels of Rab11 produce membrane recruitment and actin remodeling defects strikingly similar to nuf-derived embryos. These analyses support a common role for Nuf and Rab11 at the RE in membrane trafficking and actin remodeling during the initial stages of furrow formation.
Journal of Cell Biology | 2008
Jian Cao; Roger Albertson; Blake Riggs; Christine M. Field; William Sullivan
Plasma membrane ingression during cytokinesis involves both actin remodeling and vesicle-mediated membrane addition. Vesicle-based membrane delivery from the recycling endosome (RE) has an essential but ill-defined involvement in cytokinesis. In the Drosophila melanogaster early embryo, Nuf (Nuclear fallout), a Rab11 effector which is essential for RE function, is required for F-actin and membrane integrity during furrow ingression. We find that in nuf mutant embryos, an initial loss of F-actin at the furrow is followed by loss of the associated furrow membrane. Wild-type embryos treated with Latrunculin A or Rho inhibitor display similar defects. Drug- or Rho-GTP–induced increase of actin polymerization or genetically mediated decrease of actin depolymerization suppresses the nuf mutant F-actin and membrane defects. We also find that RhoGEF2 does not properly localize at the furrow in nuf mutant embryos and that RhoGEF2–Rho1 pathway components show strong specific genetic interactions with Nuf. We propose a model in which RE-derived vesicles promote furrow integrity by regulating the rate of actin polymerization through the RhoGEF2–Rho1 pathway.
ACS Chemical Biology | 2008
Carsten B Andersen; Yongqin Wan; Jae W. Chang; Blake Riggs; Christian C. Lee; Yi Liu; Fabio Sessa; Fabrizio Villa; Nicholas Kwiatkowski; Melissa Suzuki; Laxman Nallan; Rebecca Heald; Andrea Musacchio; Nathanael S. Gray
Aurora family kinases regulate important events during mitosis including centrosome maturation and separation, mitotic spindle assembly, and chromosome segregation. Misregulation of Aurora kinases due to genetic amplification and protein overexpression results in aneuploidy and may contribute to tumorigenesis. Here we report the discovery of new small molecule aminothiazole inhibitors of Aurora kinases with exceptional kinase selectivity and report a 1.7 A cocrystal structure with the Aurora B:INCENP complex from Xenopus laevis. The compounds recapitulate the hallmarks of Aurora kinase inhibition, including decreased histone H3 serine 10 phosphorylation, failure to complete cytokinesis, and endoreduplication.
Cell | 2008
Rose Loughlin; Blake Riggs; Rebecca Heald
Klp59C (fly)MCAK (frog, human)MONOPOLAR SPINDLEHALF SPINDLELONGER SPINDLELOSS OF CENTROSOMESSPLIT/SPLAYED POLESKINETOCHORE MISALIGNMENT,MISORIENTATIONMISALIGNED CHROMOSOME ARMSBENT SPINDLECrosslinks MTs and slides antiparallel MTs outwardSlides MTs poleward;exerts antagonizing forceagainst Kinesin-5Depolymerizes MTs atspindle polesSlides MTs poleward; generates cortical pullingforcePromotes kinetochore-MT attachmentAttaches chromosomearms to spindle and slides toward centerSlides unattachedkinetochores along aK-fiber toward spindle centerDampens kinetochoreoscillationsDepolymerizes kinetochore MTs
Methods in Cell Biology | 2001
Uyen Tram; Blake Riggs; Carol Koyama; Alain Debec; William Sullivan
Publisher Summary Drosophila melanogaster is an excellent system for structural and functional analysis of the centrosome during early embryogenesis. This Drosophila system is amenable to biochemical, molecular, and genetic approaches. Cellular analysis is powerful because specifically staged embryos are collected easily from normal and mutant stocks. The cellular, developmental, and morphological events during early embryogenesis have been described thoroughly and this provides an excellent system for analyzing centrosome behavior and function. The fact that key patterning events are also occurring at this time provides an opportunity to analyze the centrosome in a developmental context. Much of the knowledge of early Drosophila embryogenesis comes from immunofluorescent analysis of fixed embryos. Cell structures can also be analyzed by injecting fluorescently labeled probes. Flourescently labeled tubulin is a particularly useful probe for following centrosome behavior in the early embryo because it forms a distinct aster around each centrosome. This chapter describes a protocol for the live analysis of centrosomes during cortical divisions using the injection of fluorescently labeled tubulin.
PLOS ONE | 2015
Zane J. Bergman; Justin D. Mclaurin; Anthony S. Eritano; Brittany M. Johnson; Amanda Q. Sims; Blake Riggs
Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope.
Open Biology | 2015
Jeremy T. Smyth; Todd A. Schoborg; Zane J. Bergman; Blake Riggs; Nasser M. Rusan
Mechanisms that regulate partitioning of the endoplasmic reticulum (ER) during cell division are largely unknown. Previous studies have mostly addressed ER partitioning in cultured cells, which may not recapitulate physiological processes that are critical in developing, intact tissues. We have addressed this by analysing ER partitioning in asymmetrically dividing stem cells, in which precise segregation of cellular components is essential for proper development and tissue architecture. We show that in Drosophila neural stem cells, called neuroblasts, the ER asymmetrically partitioned to centrosomes early in mitosis. This correlated closely with the asymmetric nucleation of astral microtubules (MTs) by centrosomes, suggesting that astral MT association may be required for ER partitioning by centrosomes. Consistent with this, the ER also associated with astral MTs in meiotic Drosophila spermatocytes and during syncytial embryonic divisions. Disruption of centrosomes in each of these cell types led to improper ER partitioning, demonstrating the critical role for centrosomes and associated astral MTs in this process. Importantly, we show that the ER also associated with astral MTs in cultured human cells, suggesting that this centrosome/astral MT-based partitioning mechanism is conserved across animal species.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Melinda T. Owens; Shannon B. Seidel; Mike Wong; Travis E. Bejines; Susanne Lietz; Joseph R. Perez; Shangheng Sit; Zahur-Saleh Subedar; Gigi N. Acker; Susan F. Akana; Brad Balukjian; Hilary P. Benton; J. R. Blair; Segal M. Boaz; Katharyn E. Boyer; Jason B. Bram; Laura W. Burrus; Dana T. Byrd; Natalia Caporale; Edward J. Carpenter; Yee-Hung Mark Chan; Lily Chen; Amy Chovnick; Diana S. Chu; Bryan K. Clarkson; Sara E. Cooper; Catherine Creech; Karen D. Crow; José R. de la Torre; Wilfred F. Denetclaw
Significance Although the United States needs to expand its STEM (science, technology, engineering, mathematics) workforce, United States postsecondary institutions struggle to retain and effectively teach students in STEM disciplines. Using teaching techniques beyond lecture, such as pair discussions and reflective writing, has been shown to boost student learning, but it is unknown what proportion of STEM faculty use these active-learning pedagogies. Here we describe DART: Decibel Analysis for Research in Teaching, a machine-learning–derived algorithm that analyzes classroom sound to predict with high accuracy the learning activities used in classrooms, and its application to thousands of class session recordings. DART can be used for large-scale examinations of STEM teaching practices, evaluating the extent to which educators maximize opportunities for effective STEM learning. Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning–derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.
CBE- Life Sciences Education | 2018
Melinda T. Owens; Gloriana Trujillo; Shannon B. Seidel; Colin D. Harrison; Katherine M. Farrar; Hilary P. Benton; J. R. Blair; Katharyn E. Boyer; Jennifer L. Breckler; Laura W. Burrus; Dana T. Byrd; Natalia Caporale; Edward J. Carpenter; Yee-Hung Mark Chan; Joseph C. Chen; Lily Chen; Linda H. Chen; Diana S. Chu; William P. Cochlan; Robyn J. Crook; Karen D. Crow; José R. de la Torre; Wilfred F. Denetclaw; Lynne M. Dowdy; Darleen Franklin; Megumi Fuse; Michael A. Goldman; Brinda Govindan; Michael Green; Holly E. Harris
A collaborative professional development program that engaged nearly 90% of faculty in a biology department in more than 40 hours of training on scientific teaching was instituted. Participating instructors integrated active learning in their courses, as shown through a variety of methods, and reported positive effects on teaching and departmental community.
Molecular Biology of the Cell | 2017
Anthony S. Eritano; Arturo Altamirano; Sarah Beyeler; Norma Gaytan; Mark Velasquez; Blake Riggs
In the early Drosophila embryo, epithelial cells begin to adopt a cell fate. At gastrulation, there is an asymmetric partitioning of the endoplasmic reticulum in a symmetrically dividing cell population before cell fate selection. These results highlight the changes in organelle distribution before asymmetric divisions.