Blanca Rojas
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blanca Rojas.
Journal of Neuroinflammation | 2012
Beatriz I. Gallego; Juan J. Salazar; Rosa de Hoz; Blanca Rojas; Ana I. Ramírez; Manuel Salinas-Navarro; Arturo Ortín-Martínez; Francisco J. Valiente-Soriano; Marcelino Avilés-Trigueros; María Paz Villegas-Pérez; Manuel Vidal-Sanz; Alberto Triviño; José M. Ramírez
BackgroundOcular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering.MethodsTwo groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified.ResultsIn comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR (P < 0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral (P = 0.05) and in OHT-eyes (P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45).ConclusionThe use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.
Journal of Neuroinflammation | 2014
Blanca Rojas; Beatriz I. Gallego; Ana I. Ramírez; Juan J. Salazar; Rosa de Hoz; Francisco J. Valiente-Soriano; Marcelino Avilés-Trigueros; María Paz Villegas-Pérez; Manuel Vidal-Sanz; Alberto Triviño; José M. Ramírez
BackgroundGlaucomatous optic neuropathy, a leading cause of blindness, can progress despite control of intraocular pressure - currently the main risk factor and target for treatment. Glaucoma progression shares mechanisms with neurodegenerative disease, including microglia activation. In the present model of ocular hypertension (OHT), we have recently described morphological signs of retinal microglia activation and MHC-II upregulation in both the untreated contralateral eyes and OHT eyes. By using immunostaining, we sought to analyze and quantify additional signs of microglia activation and differences depending on the retinal layer.MethodsTwo groups of adult Swiss mice were used: age-matched control (naïve, n = 12), and lasered (n = 12). In the lasered animals, both OHT eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against Iba-1, MHC-II, CD68, CD86, and Ym1. The Iba-1+ cell number in the plexiform layers (PL) and the photoreceptor outer segment (OS), Iba-1+ arbor area in the PL, and area of the retina occupied by Iba-1+ cells in the nerve fiber layer-ganglion cell layer (NFL-GCL) were quantified.ResultsThe main findings in contralateral eyes and OHT eyes were: i) ameboid microglia in the NFL-GCL and OS; ii) the retraction of processes in all retinal layers; iii) a higher level of branching in PL and in the OS; iv) soma displacement to the nearest cell layers in the PL and OS; v) the reorientation of processes in the OS; vi) MHC-II upregulation in all retinal layers; vii) increased CD68 immunostaining; and viii) CD86 immunolabeling in ameboid cells. In comparison with the control group, a significant increase in the microglial number in the PL, OS, and in the area occupied by Iba-1+ cells in the NFL-GCL, and significant reduction of the arbor area in the PL. In addition, rounded Iba-1+ CD86+ cells in the NFL-GCL, OS and Ym1+ cells, and rod-like microglia in the NFL-GCL were restricted to OHT eyes.ConclusionsSeveral quantitative and qualitative signs of microglia activation are detected both in the contralateral and OHT eyes. Such activation extended beyond the GCL, involving all retinal layers. Differences between the two eyes could help to elucidate glaucoma pathophysiology.
Investigative Ophthalmology & Visual Science | 2010
Ana I. Ramírez; Juan J. Salazar; Rosa de Hoz; Blanca Rojas; Beatriz I. Gallego; Manuel Salinas-Navarro; Luis Alarcón-Martínez; Arturo Ortín-Martínez; Marcelino Avilés-Trigueros; Manuel Vidal-Sanz; Alberto Triviño; José M. Ramírez
PURPOSE To analyze the effects of different levels of intraocular pressure (IOP) in the macroglia in ocular hypertension (OHT) and contralateral eyes at 3 weeks after laser photocoagulation and compare these with effects in age-matched control rats. METHODS Adult Sprague-Dawley rats were divided into an age-matched control (naive) group and an OHT group. Retinas were processed as whole mounts and immunostained with GFAP for analysis of the retinal macroglia. RESULTS The area of the retina occupied by astrocytes (AROA) was quantified. GFAP immunostaining showed common features in ipsilateral and contralateral eyes. First, although the astrocyte network maintained a star-shaped morphology, these cells had fewer secondary processes and thinner cell bodies and primary processes than did naive cells. Second, Müller cells appeared as punctate GFAP+ structures among astrocytes. Third, there was a significant reduction of the AROA in ipsilateral and contralateral eyes compared with naive eyes. Ipsilateral eyes had significantly less AROA than did contralateral eyes. The decrease was greater for OHT eyes with higher IOP levels. CONCLUSIONS OHT induces changes in the macroglia of contralateral eyes; thus, these fellow eyes should not be used as control. In eyes with OHT, there is a close relationship between IOP values and decreased AROA.
PLOS ONE | 2013
Rosa de Hoz; Beatriz I. Gallego; Ana I. Ramírez; Blanca Rojas; Juan J. Salazar; Francisco J. Valiente-Soriano; Marcelino Avilés-Trigueros; María Paz Villegas-Pérez; Manuel Vidal-Sanz; Alberto Triviño; José M. Ramírez
In the mouse model of unilateral laser-induced ocular hypertension (OHT) the microglia in both the treated and the normotensive untreated contralateral eye have morphological signs of activation and up-regulation of MHC-II expression in comparison with naïve. In the brain, rod-like microglia align to less-injured neurons in an effort to limit damage. We investigate whether: i) microglial activation is secondary to laser injury or to a higher IOP and; ii) the presence of rod-like microglia is related to OHT. Three groups of mice were used: age-matched control (naïve, n=15); and two lasered: limbal (OHT, n=15); and non-draining portion of the sclera (scleral, n=3). In the lasered animals, treated eyes as well as contralateral eyes were analysed. Retinal whole-mounts were immunostained with antibodies against, Iba-1, NF-200, MHC-II, CD86, CD68 and Ym1. In the scleral group (normal ocular pressure) no microglial signs of activation were found. Similarly to naïve eyes, OHT-eyes and their contralateral eyes had ramified microglia in the nerve-fibre layer related to the blood vessel. However, only eyes with OHT had rod-like microglia that aligned end-to-end, coupling to form trains of multiple cells running parallel to axons in the retinal surface. Rod-like microglia were CD68+ and were related to retinal ganglion cells (RGCs) showing signs of degeneration (NF-200+RGCs). Although MHC-II expression was up-regulated in the microglia of the NFL both in OHT-eyes and their contralateral eyes, no expression of CD86 and Ym1 was detected in ramified or in rod-like microglia. After 15 days of unilateral lasering of the limbal and the non-draining portion of the sclera, activated microglia was restricted to OHT-eyes and their contralateral eyes. However, rod-like microglia were restricted to eyes with OHT and degenerated NF-200+RGCs and were absent from their contralateral eyes. Thus, rod-like microglia seem be related to the neurodegeneration associated with HTO.
Journal of Controlled Release | 2015
Vanessa Andrés-Guerrero; Mengmeng Zong; Eva Ramsay; Blanca Rojas; Sanjay Sarkhel; Beatriz I. Gallego; Rosa de Hoz; Ana I. Ramírez; Juan J. Salazar; Alberto Triviño; José M. Ramírez; Eva M. del Amo; Neil R. Cameron; Beatriz de-las-Heras; Arto Urtti; George Mihov; Aylvin Jorge Angelo Athanasius Dias; Rocío Herrero-Vanrell
Most of the posterior segment diseases are chronic and multifactorial and require long-term intraocular medication. Conventional treatments of these pathologies consist of successive intraocular injections, which are associated with adverse effects. Successful therapy requires the development of new drug delivery systems able to release the active substance for a long term with a single administration. The present work involves the description of a new generation of microspheres based on poly(ester amide)s (PEA), which are novel polymers with improved biodegradability, processability and good thermal and mechanical properties. We report on the preparation of the PEA polymer, PEA microspheres (PEA Ms) and their characterization. PEA Ms (~15μm) were loaded with a lipophilic drug (dexamethasone) (181.0±2.4μg DX/mg Ms). The in vitro release profile of the drug showed a constant delivery for at least 90days. Based on the data from a performed in vitro release study, a kinetic ocular model to predict in vivo drug concentrations in a rabbit vitreous was built. According to the pharmacokinetic simulations, intravitreal injection of dexamethasone loaded PEA microspheres would provide release of the drug in rabbit eyes up to 3months. Cytotoxicity studies in macrophages and retinal pigment epithelial cells revealed a good in vitro tolerance of the microsystems. After sterilization, PEA Ms were administered in vivo by subtenon and intravitreal injections in male Sprague-Dawley rats and the location of the microspheres in rat eyes was monitored. We conclude that PEA Ms provide an alternative delivery system for controlling the delivery of drugs to the eye, allowing a novel generation of microsphere design.
Frontiers in Aging Neuroscience | 2017
Ana I. Ramírez; Rosa de Hoz; E. Salobrar-Garcia; Juan J. Salazar; Blanca Rojas; Daniel Ajoy; Inés López-Cuenca; Pilar Rojas; Alberto Triviño; José M. Ramírez
Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimers disease (AD), Parkinsons disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.
American Journal of Ophthalmology | 1999
C. Stephen Foster; Panagiota Stavrou; Panayotis Zafirakis; Blanca Rojas; Nattaporn Tesavibul; Stefanos Baltatzis
Abstract PURPOSE: To report a series of patients with uveitis and cataract who had undergone cataract extraction with posterior chamber intraocular lens implantation and who subsequently had the intraocular lens removed because of progressive intraocular damage from inflammation. METHODS: Review of the records of 19 patients after removal of a posterior chamber intraocular lens. The decision to perform surgery was based on standard criteria after evaluation at a single uveitis referral center. RESULTS: The complications leading to intraocular lens removal were perilental membrane (eight eyes), chronic low-grade inflammation not responding to anti-inflammatory treatment (eight eyes), and cyclitic membrane resulting in hypotony and maculopathy (three eyes). After intraocular lens removal the inflammation subsided and the visual acuity improved or stabilized in 14 of the 19 eyes. The causes of further reduction in the visual acuity of the other five patients were macular edema (two patients), maculopathy resulting from hypotony (one patient), retinal detachment (one patient), and vitreous hemorrhage (one patient). CONCLUSIONS: Intraocular lens implantation can form part of a reasonable plan for visual rehabilitation of patients with uveitic cataract, but inclusion of an intraocular lens in the plan is not always in the overall long-term best interest of the patient. Intraocular lens removal may salvage useful vision for patients who continue to exhibit complications secondary to uveitis after cataract extraction and intraocular lens implantation, provided the intraocular lens is removed before irreparable damage has been done to macula or optic nerve.
Ophthalmology | 2014
Elena S. Garcia-Martin; Blanca Rojas; Ana I. Ramírez; Rosa de Hoz; Juan J. Salazar; Raquel Yubero; Pedro Gil; Alberto Triviño; José M. Ramírez
Although several postmortem findings in the retina of patients with Alzheimers disease (AD) are available, new biomarkers for early diagnosis and follow-up of AD are still lacking. It has been postulated that the defects in the retinal nerve fiber layer (RNFL) may be the earliest sign of AD, even before damage to the hippocampal region that affects memory. This fact may reflect retinal neuronal-ganglion cell death and axonal loss in the optic nerve in addition to aging.
BioMed Research International | 2016
Rosa de Hoz; Blanca Rojas; Ana I. Ramírez; Juan J. Salazar; Beatriz I. Gallego; Alberto Triviño; José M. Ramírez
Due to their permanent and close proximity to neurons, glial cells perform essential tasks for the normal physiology of the retina. Astrocytes and Müller cells (retinal macroglia) provide physical support to neurons and supplement them with several metabolites and growth factors. Macroglia are involved in maintaining the homeostasis of extracellular ions and neurotransmitters, are essential for information processing in neural circuits, participate in retinal glucose metabolism and in removing metabolic waste products, regulate local blood flow, induce the blood-retinal barrier (BRB), play fundamental roles in local immune response, and protect neurons from oxidative damage. In response to polyetiological insults, glia cells react with a process called reactive gliosis, seeking to maintain retinal homeostasis. When malfunctioning, macroglial cells can become primary pathogenic elements. A reactive gliosis has been described in different retinal pathologies, including age-related macular degeneration (AMD), diabetes, glaucoma, retinal detachment, or retinitis pigmentosa. A better understanding of the dual, neuroprotective, or cytotoxic effect of macroglial involvement in retinal pathologies would help in treating the physiopathology of these diseases. The extensive participation of the macroglia in retinal diseases points to these cells as innovative targets for new drug therapies.
BioMed Research International | 2015
E. Salobrar-Garcia; Irene Hoyas; Mercedes Leal; Rosa de Hoz; Blanca Rojas; Ana I. Ramírez; Juan J. Salazar; Raquel Yubero; Pedro Gil; Alberto Triviño; José M. Ramírez
Decreased thickness of the retinal nerve fiber layer (RNFL) may reflect retinal neuronal-ganglion cell death. A decrease in the RNFL has been demonstrated in Alzheimers disease (AD) in addition to aging by optical coherence tomography (OCT). Twenty-three mild-AD patients and 28 age-matched control subjects with mean Mini-Mental State Examination 23.3 and 28.2, respectively, with no ocular disease or systemic disorders affecting vision, were considered for study. OCT peripapillary and macular segmentation thickness were examined in the right eye of each patient. Compared to controls, eyes of patients with mild-AD patients showed no statistical difference in peripapillary RNFL thickness (P > 0.05); however, sectors 2, 3, 4, 8, 9, and 11 of the papilla showed thinning, while in sectors 1, 5, 6, 7, and 10 there was thickening. Total macular volume and RNFL thickness of the fovea in all four inner quadrants and in the outer temporal quadrants proved to be significantly decreased (P < 0.01). Despite the fact that peripapillary RNFL thickness did not statistically differ in comparison to control eyes, the increase in peripapillary thickness in our mild-AD patients could correspond to an early neurodegeneration stage and may entail the existence of an inflammatory process that could lead to progressive peripapillary fiber damage.