Blanca Rubi
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blanca Rubi.
Clinical Science | 2005
Philip Newsholme; Lorraine Brennan; Blanca Rubi; Pierre Maechler
Specific amino acids are now known to acutely and chronically regulate insulin secretion from pancreatic beta-cells in vivo and in vitro. Understanding the molecular mechanisms by which amino acids regulate insulin secretion may identify novel targets for future diabetes therapies. Mitochondrial metabolism is crucial for the coupling of amino acid and glucose recognition to the exocytosis of the insulin granules. This is illustrated by in vitro and in vivo observations discussed in the present review. Mitochondria generate ATP, which is the main coupling factor in insulin secretion; however, the subsequent Ca2+ signal in the cytosol is necessary, but not sufficient, for full development of sustained insulin secretion. Hence mitochondria generate ATP and other coupling factors serving as fuel sensors for the control of the exocytotic process. Numerous studies have sought to identify the factors that mediate the amplifying pathway over the Ca2+ signal in nutrient-stimulated insulin secretion. Predominantly, these factors are nucleotides (GTP, ATP, cAMP and NADPH), although metabolites have also been proposed, such as long-chain acyl-CoA derivatives and the key amino acid glutamate. This scenario highlights further the importance of the key enzymes or transporters, glutamate dehydrogenase, the aspartate and alanine aminotransferases and the malate/aspartate shuttle, in the control of insulin secretion. Therefore amino acids may play a direct or indirect (via generation of putative messengers of mitochondrial origin) role in insulin secretion.
Journal of Biological Chemistry | 2005
Blanca Rubi; Sanda Ljubicic; Shirin Pournourmohammadi; Stefania Carobbio; Mathieu Armanet; Clarissa Bartley; Pierre Maechler
Dopamine signaling is mediated by five cloned receptors, grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families. We identified by reverse transcription-PCR the presence of dopamine receptors from both families in INS-1E insulin-secreting cells as well as in rodent and human isolated islets. D2 receptor expression was confirmed by immunodetection revealing localization on insulin secretory granules of INS-1E and primary rodent and human beta cells. We then tested potential effects mediated by the identified receptors on beta cell function. Dopamine (10 μm) and the D2-like receptor agonist quinpirole (5 μm) inhibited glucose-stimulated insulin secretion tested in several models, i.e. INS-1E beta cells, fluorescence-activated cell-sorted primary rat beta cells, and pancreatic islets of rat, mouse, and human origin. Insulin exocytosis is controlled by metabolism coupled to cytosolic calcium changes. Measurements of glucose-induced mitochondrial hyperpolarization and ATP generation showed that dopamine and D2-like agonists did not inhibit glucose metabolism. On the other hand, dopamine decreased cell membrane depolarization as well as cytosolic calcium increases evoked by glucose stimulation in INS-1E beta cells. These results show for the first time that dopamine receptors are expressed in pancreatic beta cells. Dopamine inhibited glucose-stimulated insulin secretion, an effect that could be ascribed to D2-like receptors. Regarding the molecular mechanisms implicated in dopamine-mediated inhibition of insulin release, our results point to distal steps in metabolism-secretion coupling. Thus, the role played by dopamine in glucose homeostasis might involve dopamine receptors, expressed in pancreatic beta cells, modulating insulin release.
Journal of Biological Chemistry | 2009
Stefania Carobbio; Francesca Frigerio; Blanca Rubi; Laurene Marine Vetterli; Maria Bloksgaard; Asllan Gjinovci; Shirin Pournourmohammadi; Pedro Luis Herrera; Walter Reith; Susanne Mandrup; Pierre Maechler
Insulin exocytosis is regulated in pancreatic ß-cells by a cascade of intracellular signals translating glucose levels into corresponding secretory responses. The mitochondrial enzyme glutamate dehydrogenase (GDH) is regarded as a major player in this process, although its abrogation has not been tested yet in animal models. Here, we generated transgenic mice, named ßGlud1–/–, with ß-cell-specific GDH deletion. Our results show that GDH plays an essential role in the full development of the insulin secretory response. In situ pancreatic perfusion revealed that glucose-stimulated insulin secretion was reduced by 37% in ßGlud1–/–. Furthermore, isolated islets with either constitutive or acute adenovirus-mediated knock-out of GDH showed a 49 and 38% reduction in glucose-induced insulin release, respectively. Adenovirus-mediated re-expression of GDH in ßGlud1–/– islets fully restored glucose-induced insulin release. Thus, GDH appears to account for about 40% of glucose-stimulated insulin secretion and to lack redundant mechanisms. In ßGlud1–/– mice, the reduced secretory capacity resulted in lower plasma insulin levels in response to both feeding and glucose load, while body weight gain was preserved. The results demonstrate that GDH is essential for the full development of the secretory response in ß-cells. However, maximal secretory capacity is not required for maintenance of glucose homeostasis in normo-caloric conditions.
Journal of Biological Chemistry | 2009
Marina Shamini Casimir; Francesco M. Lasorsa; Blanca Rubi; Dorothée Caille; Ferdinando Palmieri; Paolo Meda; Pierre Maechler
The SLC25 carrier family mediates solute transport across the inner mitochondrial membrane, a process that is still poorly characterized regarding both the mechanisms and proteins implicated. This study investigated mitochondrial glutamate carrier GC1 in insulin-secreting β-cells. GC1 was cloned from insulin-secreting cells, and sequence analysis revealed hydropathy profile of a six-transmembrane protein, characteristic of mitochondrial solute carriers. GC1 was found to be expressed at the mRNA and protein levels in INS-1E β-cells and pancreatic rat islets. Immunohistochemistry showed that GC1 was present in mitochondria, and ultrastructural analysis by electron microscopy revealed inner mitochondrial membrane localization of the transporter. Silencing of GC1 in INS-1E β-cells, mediated by adenoviral delivery of short hairpin RNA, reduced mitochondrial glutamate transport by 48% (p < 0.001). Insulin secretion at basal 2.5 mm glucose and stimulated either by intermediate 7.5 mm glucose or non-nutrient 30 mm KCl was not modified by GC1 silencing. Conversely, insulin secretion stimulated with optimal 15 mm glucose was reduced by 23% (p < 0.005) in GC1 knocked down cells compared with controls. Adjunct of cell-permeant glutamate (5 mm dimethyl glutamate) fully restored the secretory response at 15 mm glucose (p < 0.005). Kinetics of insulin secretion were investigated in perifused isolated rat islets. GC1 silencing in islets inhibited the secretory response induced by 16.7 mm glucose, both during first (−25%, p < 0.05) and second (−33%, p < 0.05) phases. This study demonstrates that insulin-secreting cells depend on GC1 for maximal glucose response, thereby assigning a physiological function to this newly identified mitochondrial glutamate carrier.
Molecular Pain | 2009
Jean-Philippe Vit; Peter T. Ohara; Christopher Sundberg; Blanca Rubi; Pierre Maechler; Chunyan Liu; Mariana Puntel; Pedro R. Lowenstein; Maria G. Castro; Luc Jasmin
BackgroundOur goal is to use gene therapy to alleviate pain by targeting glial cells. In an animal model of facial pain we tested the effect of transfecting the glutamic acid decarboxylase (GAD) gene into satellite glial cells (SGCs) of the trigeminal ganglion by using a serotype 5 adenovector with high tropisms for glial cells. We postulated that GABA produced from the expression of GAD would reduce pain behavior by acting on GABA receptors on neurons within the ganglion.ResultsInjection of adenoviral vectors (AdGAD65) directly into the trigeminal ganglion leads to sustained expression of the GAD65 isoform over the 4 weeks observation period. Immunohistochemical analysis showed that adenovirus-mediated GAD65 expression and GABA synthesis were mainly in SGCs. GABAA and GABAB receptors were both seen in sensory neurons, yet only GABAA receptors decorated the neuronal surface. GABA receptors were not found on SGCs. Six days after injection of AdGAD65 into the trigeminal ganglion, there was a statistically significant decrease of pain behavior in the orofacial formalin test, a model of inflammatory pain. Rats injected with control virus (AdGFP or AdLacZ) had no reduction in their pain behavior. AdGAD65-dependent analgesia was blocked by bicuculline, a selective GABAA receptor antagonist, but not by CGP46381, a selective GABAB receptor antagonist.ConclusionTransfection of glial cells in the trigeminal ganglion with the GAD gene blocks pain behavior by acting on GABAA receptors on neuronal perikarya.
Journal of Biological Chemistry | 2002
Montserrat Morillas; Paulino Gómez-Puertas; Blanca Rubi; Josep Clotet; Joaquín Ariño; Alfonso Valencia; Fausto G. Hegardt; Dolors Serra; Guillermina Asins
Carnitine octanoyltransferase (COT) and carnitine palmitoyltransferase (CPT) I, which facilitate the transport of medium- and long-chain fatty acids through the peroxisomal and mitochondrial membranes, are physiologically inhibited by malonyl-CoA. Using an “in silico” macromolecular docking approach, we built a model in which malonyl-CoA could be attached near the catalytic core. This disrupts the positioning of the acyl-CoA substrate in the channel in the model reported for both proteins (Morillas, M., Gómez-Puertas, P., Roca, R., Serra, D., Asins, G., Valencia, A., and Hegardt, F. G. (2001) J. Biol. Chem. 276, 45001–45008). The putative malonyl-CoA domain contained His340, implicated together with His131 in COT malonyl-CoA sensitivity (Morillas, M., Clotet, J., Rubı́, B., Serra, D., Asins, G., Ariño, J., and Hegardt F. G. (2000) FEBS Lett. 466, 183–186). When we mutated COT His131 the IC50increased, and malonyl-CoA competed with the substrate decanoyl-CoA. Mutation of COT Ala332, present in the domain 8 amino acids away from His340, decreased the malonyl-CoA sensitivity of COT. The homologous histidine and alanine residues of L-CPT I, His277, His483, and Ala478 were also mutated, which decreased malonyl-CoA sensitivity. Natural mutation of Pro479, which is also located in the malonyl-CoA predicted site, to Leu in a patient with human L-CPT I hereditary deficiency, modified malonyl-CoA sensitivity. We conclude that this malonyl-CoA domain is present in both COT and L-CPT I proteins and might be the site at which malonyl-CoA interacts with the substrate acyl-CoA. Other malonyl-CoA non-inhibitable members of the family, CPT II and carnitine acetyltransferase, do not contain this domain.
Biochemical Journal | 2009
Marina Shamini Casimir; Blanca Rubi; Francesca Frigerio; Gaelle Chaffard; Pierre Maechler
Transfer of reducing equivalents between cytosolic compartments and the mitochondrial matrix is mediated by NADH shuttles. Among these, the malate-aspartate shuttle has been proposed to play a major role in beta-cells for the control of glucose-stimulated insulin secretion. AGC1 or Aralar1 (aspartate-glutamate carrier 1) is a key component of the malate-aspartate shuttle. Overexpression of AGC1 increases the capacity of the malate-aspartate shuttle, resulting in enhanced metabolism-secretion coupling, both in INS-1E cells and rat islets. In the present study, knockdown of AGC1 was achieved in the same beta-cell models, using adenovirus-mediated delivery of shRNA (small-hairpin RNA). Compared with control INS-1E cells, down-regulation of AGC1 blunted NADH formation (-57%; P<0.05), increased lactate production (+16%; P<0.001) and inhibited glucose oxidation (-22%; P<0.01). This correlated with a reduced secretory response at 15 mM glucose (-25%; P<0.05), while insulin release was unchanged at intermediate 7.5 mM and basal 2.5 mM glucose. In isolated rat islets, efficient AGC1 knockdown did not alter insulin exocytosis evoked by 16.7 mM glucose. However, 4 mM amino-oxyacetate, commonly used to block transaminases of the malate-aspartate shuttle, inhibited glucose-stimulated insulin secretion to similar extents in INS-1E cells (-66%; P<0.01) and rat islets (-56%; P<0.01). These results show that down-regulation of the key component of the malate-aspartate shuttle AGC1 reduced glucose-induced oxidative metabolism and insulin secretion in INS-1E cells, whereas similar AGC1 knockdown in rat islets did not affect their secretory response.
FEBS Letters | 2000
Montserrat Morillas; Josep Clotet; Blanca Rubi; Dolors Serra; Guillermina Asins; Joaquín Ariño; Fausto G. Hegardt
Carnitine octanoyltransferase (COT), an enzyme that facilitates the transport of medium chain fatty acids through peroxisomal membranes, is inhibited by malonyl‐CoA. cDNAs encoding full‐length wild‐type COT and one double mutant variant from rat peroxisomal COT were expressed in Saccharomyces cerevisiae. Both expressed forms were expressed similarly in quantitative terms and exhibited full enzyme activity. The wild‐type‐expressed COT was inhibited by malonyl‐CoA like the liver enzyme. The activity of the enzyme encoded by the double mutant H131A/H340A was completely insensitive to malonyl‐CoA in the range assayed (2–200 μM). These results indicate that the two histidine residues, H131 and H340, are the sites responsible for inhibition by malonyl‐CoA. Another mutant variant, H327A, abolishes the enzyme activity, from which it is concluded that it plays an important role in catalysis.
Endocrinology | 2004
Arnaud Merglen; Sten Theander; Blanca Rubi; Gaelle Chaffard; Claes B. Wollheim; Pierre Maechler
The International Journal of Biochemistry & Cell Biology | 2006
Pierre Maechler; Stefania Carobbio; Blanca Rubi