Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blanca Taboada is active.

Publication


Featured researches published by Blanca Taboada.


Nucleic Acids Research | 2011

RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)

Socorro Gama-Castro; Heladia Salgado; Martín Peralta-Gil; Alberto Santos-Zavaleta; Luis Muñiz-Rascado; Hilda Solano-Lira; Verónica Jiménez-Jacinto; Verena Weiss; Jair Santiago García-Sotelo; Alejandra López-Fuentes; Liliana Porrón-Sotelo; Shirley Alquicira-Hernández; Alejandra Medina-Rivera; Irma Martínez-Flores; Kevin Alquicira-Hernández; Ruth Martínez-Adame; César Bonavides-Martínez; Juan Miranda-Ríos; Araceli M. Huerta; Alfredo Mendoza-Vargas; Leonardo Collado-Torres; Blanca Taboada; Leticia Vega-Alvarado; Maricela Olvera; Leticia Olvera; Ricardo Grande; Julio Collado-Vides

RegulonDB (http://regulondb.ccg.unam.mx/) is the primary reference database of the best-known regulatory network of any free-living organism, that of Escherichia coli K-12. The major conceptual change since 3 years ago is an expanded biological context so that transcriptional regulation is now part of a unit that initiates with the signal and continues with the signal transduction to the core of regulation, modifying expression of the affected target genes responsible for the response. We call these genetic sensory response units, or Gensor Units. We have initiated their high-level curation, with graphic maps and superreactions with links to other databases. Additional connectivity uses expandable submaps. RegulonDB has summaries for every transcription factor (TF) and TF-binding sites with internal symmetry. Several DNA-binding motifs and their sizes have been redefined and relocated. In addition to data from the literature, we have incorporated our own information on transcription start sites (TSSs) and transcriptional units (TUs), obtained by using high-throughput whole-genome sequencing technologies. A new portable drawing tool for genomic features is also now available, as well as new ways to download the data, including web services, files for several relational database manager systems and text files including BioPAX format.


PLOS ONE | 2009

Genome-Wide Identification of Transcription Start Sites, Promoters and Transcription Factor Binding Sites in E. coli

Alfredo Mendoza-Vargas; Leticia Olvera; Maricela Olvera; Ricardo Grande; Leticia Vega-Alvarado; Blanca Taboada; Verónica Jiménez-Jacinto; Heladia Salgado; Katy Juárez; Bruno Contreras-Moreira; Araceli M. Huerta; Julio Collado-Vides

Despite almost 40 years of molecular genetics research in Escherichia coli a major fraction of its Transcription Start Sites (TSSs) are still unknown, limiting therefore our understanding of the regulatory circuits that control gene expression in this model organism. RegulonDB (http://regulondb.ccg.unam.mx/) is aimed at integrating the genetic regulatory network of E. coli K12 as an entirely bioinformatic project up till now. In this work, we extended its aims by generating experimental data at a genome scale on TSSs, promoters and regulatory regions. We implemented a modified 5′ RACE protocol and an unbiased High Throughput Pyrosequencing Strategy (HTPS) that allowed us to map more than 1700 TSSs with high precision. From this collection, about 230 corresponded to previously reported TSSs, which helped us to benchmark both our methodologies and the accuracy of the previous mapping experiments. The other ca 1500 TSSs mapped belong to about 1000 different genes, many of them with no assigned function. We identified promoter sequences and type of σ factors that control the expression of about 80% of these genes. As expected, the housekeeping σ70 was the most common type of promoter, followed by σ38. The majority of the putative TSSs were located between 20 to 40 nucleotides from the translational start site. Putative regulatory binding sites for transcription factors were detected upstream of many TSSs. For a few transcripts, riboswitches and small RNAs were found. Several genes also had additional TSSs within the coding region. Unexpectedly, the HTPS experiments revealed extensive antisense transcription, probably for regulatory functions. The new information in RegulonDB, now with more than 2400 experimentally determined TSSs, strengthens the accuracy of promoter prediction, operon structure, and regulatory networks and provides valuable new information that will facilitate the understanding from a global perspective the complex and intricate regulatory network that operates in E. coli.


Nucleic Acids Research | 2012

ProOpDB: Prokaryotic Operon DataBase

Blanca Taboada; Ricardo Ciria; Cristian E. Martinez-Guerrero; Enrique Merino

The Prokaryotic Operon DataBase (ProOpDB, http://operons.ibt.unam.mx/OperonPredictor) constitutes one of the most precise and complete repositories of operon predictions now available. Using our novel and highly accurate operon identification algorithm, we have predicted the operon structures of more than 1200 prokaryotic genomes. ProOpDB offers diverse alternatives by which a set of operon predictions can be retrieved including: (i) organism name, (ii) metabolic pathways, as defined by the KEGG database, (iii) gene orthology, as defined by the COG database, (iv) conserved protein domains, as defined by the Pfam database, (v) reference gene and (vi) reference operon, among others. In order to limit the operon output to non-redundant organisms, ProOpDB offers an efficient method to select the most representative organisms based on a precompiled phylogenetic distances matrix. In addition, the ProOpDB operon predictions are used directly as the input data of our Gene Context Tool to visualize their genomic context and retrieve the sequence of their corresponding 5′ regulatory regions, as well as the nucleotide or amino acid sequences of their genes.


Biochemical and Biophysical Research Communications | 2008

Tracking sperm in three-dimensions.

Gabriel Corkidi; Blanca Taboada; Christopher D. Wood; Adán Guerrero; Alberto Darszon

Sperm motility, crucial for fertilization, has been mostly studied in two dimensions (2D) by recording their swimming trajectories near a flat surface. However, spermatozoa swim in three-dimensions (3D) to find eggs, with their speed being the main impediment to track them under realistic conditions. Here, we describe a novel method allowing 3D tracking and analysis of the trajectories of multiple free-swimming sperm. The system uses a piezo-electric device displacing a large focal distance objective mounted on a microscope to acquire 70 image stacks per second, each stack composed of 60 images that span a depth of 100 microm. With this method, 3D paths of multiple sperm in the same field could be visualized simultaneously during 1 s. Within the same sample we found that surface-confined sperm swam 25% slower, produced 3-fold fewer circular revolutions per second, and had trajectories of 134% greater radius of curvature than those sperm swimming freely in 3D.


Nucleic Acids Research | 2010

High accuracy operon prediction method based on STRING database scores

Blanca Taboada; Cristina Verde; Enrique Merino

We present a simple and highly accurate computational method for operon prediction, based on intergenic distances and functional relationships between the protein products of contiguous genes, as defined by STRING database (Jensen,L.J., Kuhn,M., Stark,M., Chaffron,S., Creevey,C., Muller,J., Doerks,T., Julien,P., Roth,A., Simonovic,M. et al. (2009) STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 37, D412–D416). These two parameters were used to train a neural network on a subset of experimentally characterized Escherichia coli and Bacillus subtilis operons. Our predictive model was successfully tested on the set of experimentally defined operons in E. coli and B. subtilis, with accuracies of 94.6 and 93.3%, respectively. As far as we know, these are the highest accuracies ever obtained for predicting bacterial operons. Furthermore, in order to evaluate the predictable accuracy of our model when using an organisms data set for the training procedure, and a different organisms data set for testing, we repeated the E. coli operon prediction analysis using a neural network trained with B. subtilis data, and a B. subtilis analysis using a neural network trained with E. coli data. Even for these cases, the accuracies reached with our method were outstandingly high, 91.5 and 93%, respectively. These results show the potential use of our method for accurately predicting the operons of any other organism. Our operon predictions for fully-sequenced genomes are available at http://operons.ibt.unam.mx/OperonPredictor/.


PLOS ONE | 2014

Is There Still Room for Novel Viral Pathogens in Pediatric Respiratory Tract Infections

Blanca Taboada; Marco A. Espinoza; Pavel Isa; Fernando E. Aponte; Jesús Monge-Martínez; Rubén Rodríguez-Vázquez; Fidel Díaz-Hernández; Fernando Zárate-Vidal; Rosa María Wong-Chew; Verónica Firo-Reyes; Carlos N. del Río-Almendárez; Jesús Gaitán-Meza; Alberto Villaseñor-Sierra; Gerardo Martinez-Aguilar; Ma. del Carmen Salas-Mier; Daniel E. Noyola; Luis F. Pérez-González; Susana López; José Ignacio Santos-Preciado; Carlos F. Arias

Viruses are the most frequent cause of respiratory disease in children. However, despite the advanced diagnostic methods currently in use, in 20 to 50% of respiratory samples a specific pathogen cannot be detected. In this work, we used a metagenomic approach and deep sequencing to examine respiratory samples from children with lower and upper respiratory tract infections that had been previously found negative for 6 bacteria and 15 respiratory viruses by PCR. Nasal washings from 25 children (out of 250) hospitalized with a diagnosis of pneumonia and nasopharyngeal swabs from 46 outpatient children (out of 526) were studied. DNA reads for at least one virus commonly associated to respiratory infections was found in 20 of 25 hospitalized patients, while reads for pathogenic respiratory bacteria were detected in the remaining 5 children. For outpatients, all the samples were pooled into 25 DNA libraries for sequencing. In this case, in 22 of the 25 sequenced libraries at least one respiratory virus was identified, while in all other, but one, pathogenic bacteria were detected. In both patient groups reads for respiratory syncytial virus, coronavirus-OC43, and rhinovirus were identified. In addition, viruses less frequently associated to respiratory infections were also found. Saffold virus was detected in outpatient but not in hospitalized children. Anellovirus, rotavirus, and astrovirus, as well as several animal and plant viruses were detected in both groups. No novel viruses were identified. Adding up the deep sequencing results to the PCR data, 79.2% of 250 hospitalized and 76.6% of 526 ambulatory patients were positive for viruses, and all other children, but one, had pathogenic respiratory bacteria identified. These results suggest that at least in the type of populations studied and with the sampling methods used the odds of finding novel, clinically relevant viruses, in pediatric respiratory infections are low.


Journal of Virology | 2015

A novel endogenous betaretrovirus in the common vampire bat (Desmodus rotundus) suggests multiple independent infection and cross-species transmission events

Marina Escalera-Zamudio; M. Lisandra Zepeda Mendoza; Felix Heeger; Elizabeth Loza-Rubio; Edith Rojas-Anaya; Maria L. Méndez-Ojeda; Blanca Taboada; Camila J. Mazzoni; Carlos F. Arias; Alex D. Greenwood

ABSTRACT The Desmodus rotundus endogenous betaretrovirus (DrERV) is fixed in the vampire bat D. rotundus population and in other phyllostomid bats but is not present in all species from this family. DrERV is not phylogenetically related to Old World bat betaretroviruses but to betaretroviruses from rodents and New World primates, suggesting recent cross-species transmission. A recent integration age estimation of the provirus in some taxa indicates that an exogenous counterpart might have been in recent circulation.


Virology Journal | 2015

Rhinovirus is an important pathogen in upper and lower respiratory tract infections in Mexican children

Fernando E. Aponte; Blanca Taboada; Marco A. Espinoza; Jesús Monge-Martínez; Rubén Rodríguez-Vázquez; Fidel Díaz-Hernández; Fernando Zárate-Vidal; Rosa María Wong-Chew; Verónica Firo-Reyes; Carlos N. del Río-Almendárez; Jesús Gaitán-Meza; Alberto Villaseñor-Sierra; Gerardo Martinez-Aguilar; Maricela García-Borjas; Daniel E. Noyola; Luis F. Pérez-González; Susana López; José Ignacio Santos-Preciado; Carlos F. Arias

BackgroundMost of the studies characterizing the incidence of rhinovirus (RV) have been carried out in hospitalized children and in developed countries. In those studies, RV-C has been associated with more severe respiratory tract infections than RV species A and B. In this study we determined the frequency and diversity of RV strains associated with upper and lower respiratory tract infections (URTI, LRTI) in Mexico, and describe the clinical characteristics of the illness associated with different RV species.MethodsA prospective surveillance of 526 and 250 children with URTI and LRTI was carried out. Respiratory samples were analyzed by RT-PCR for viruses. The 5′ untranslated region of the RV genome was amplified and sequenced.ResultsIn the case of URTI, 17.5% were positive for RV, while this virus was found in 24.8% of LRTI. The RV species was determined in 73 children with URTI: 61.6% were RV-A, 37% RV-C and, 1.4% RV-B; and in 43 children with LRTI: 51.2% were RV-A, 41.8% RV-C, and 7% RV-B. No significant differences in clinical characteristics were found in patients with RV-A or RV-C infections. A high genetic diversity of RV strains was found in both URTI and LRTI.ConclusionsBoth RV-A and RV-C species were frequently found in hospitalized as well as in outpatient children. This study underlines the high prevalence and genetic diversity of RV strains in Mexico and the potential severity of disease associated with RV-A and RV-C infections.


Mbio | 2016

Bats, Primates, and the Evolutionary Origins and Diversification of Mammalian Gammaherpesviruses

Marina Escalera-Zamudio; Edith Rojas-Anaya; Sergios-Orestis Kolokotronis; Blanca Taboada; Elizabeth Loza-Rubio; Maria L. Méndez-Ojeda; Carlos F. Arias; Nikolaus Osterrieder; Alex D. Greenwood

ABSTRACT Gammaherpesviruses (γHVs) are generally considered host specific and to have codiverged with their hosts over millions of years. This tenet is challenged here by broad-scale phylogenetic analysis of two viral genes using the largest sample of mammalian γHVs to date, integrating for the first time bat γHV sequences available from public repositories and newly generated viral sequences from two vampire bat species (Desmodus rotundus and Diphylla ecaudata). Bat and primate viruses frequently represented deep branches within the supported phylogenies and clustered among viruses from distantly related mammalian taxa. Following evolutionary scenario testing, we determined the number of host-switching and cospeciation events. Cross-species transmissions have occurred much more frequently than previously estimated, and most of the transmissions were attributable to bats and primates. We conclude that the evolution of the Gammaherpesvirinae subfamily has been driven by both cross-species transmissions and subsequent cospeciation within specific viral lineages and that the bat and primate orders may have potentially acted as superspreaders to other mammalian taxa throughout evolutionary history. IMPORTANCE It has long been believed that herpesviruses have coevolved with their hosts and are species specific. Nevertheless, a global evolutionary analysis of bat viruses in the context of other mammalian viruses, which could put this widely accepted view to the test, had not been undertaken until now. We present two main findings that may challenge the current view of γHV evolution: multiple host-switching events were observed at a higher rate than previously appreciated, and bats and primates harbor a large diversity of γHVs which may have led to increased cross-species transmissions from these taxa to other mammals. It has long been believed that herpesviruses have coevolved with their hosts and are species specific. Nevertheless, a global evolutionary analysis of bat viruses in the context of other mammalian viruses, which could put this widely accepted view to the test, had not been undertaken until now. We present two main findings that may challenge the current view of γHV evolution: multiple host-switching events were observed at a higher rate than previously appreciated, and bats and primates harbor a large diversity of γHVs which may have led to increased cross-species transmissions from these taxa to other mammals.


Nature Ecology and Evolution | 2018

Hologenomic adaptations underlying the evolution of sanguivory in the common vampire bat

M. Lisandra Zepeda Mendoza; Zijun Xiong; Marina Escalera-Zamudio; Anne Kathrine Runge; Julien Thézé; Daniel G. Streicker; Hannah K. Frank; Elizabeth Loza-Rubio; Shengmao Liu; Oliver A. Ryder; Jose Alfredo Samaniego Castruita; Aris Katzourakis; George Pacheco; Blanca Taboada; Ulrike Löber; Oliver G. Pybus; Yang Li; Edith Rojas-Anaya; Kristine Bohmann; Aldo Carmona Baez; Carlos F. Arias; Shiping Liu; Alex D. Greenwood; Mads F. Bertelsen; Nicole E. White; Michael Bunce; Guojie Zhang; Thomas Sicheritz-Pontén; M. P. Thomas Gilbert

Adaptation to specialized diets often requires modifications at both genomic and microbiome levels. We applied a hologenomic approach to the common vampire bat (Desmodus rotundus), one of the only three obligate blood-feeding (sanguivorous) mammals, to study the evolution of its complex dietary adaptation. Specifically, we assembled its high-quality reference genome (scaffold N50 = 26.9 Mb, contig N50 = 36.6 kb) and gut metagenome, and compared them against those of insectivorous, frugivorous and carnivorous bats. Our analyses showed a particular common vampire bat genomic landscape regarding integrated viral elements, a dietary and phylogenetic influence on gut microbiome taxonomic and functional profiles, and that both genetic elements harbour key traits related to the nutritional (for example, vitamin and lipid shortage) and non-nutritional (for example, nitrogen waste and osmotic homeostasis) challenges of sanguivory. These findings highlight the value of a holistic study of both the host and its microbiota when attempting to decipher adaptations underlying radical dietary lifestyles.The common vampire bat (Desmodus rotundus) is one of only three obligate blood-feeding mammals. By sequencing both its genome and gut metagenome, the authors provide a holistic view of the evolutionary adaptations that underlie this unusual diet.

Collaboration


Dive into the Blanca Taboada's collaboration.

Top Co-Authors

Avatar

Carlos F. Arias

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Leticia Vega-Alvarado

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Gabriel Corkidi

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Enrique Galindo

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Susana López

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edith Rojas-Anaya

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Enrique Merino

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alfredo Mendoza-Vargas

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge