Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blandine Comte is active.

Publication


Featured researches published by Blandine Comte.


Journal of Nutrition | 2011

The Biological Relevance of Direct Antioxidant Effects of Polyphenols for Cardiovascular Health in Humans Is Not Established

Peter C. H. Hollman; Aedin Cassidy; Blandine Comte; Marina Heinonen; Myriam Richelle; Elke Richling; Mauro Serafini; Augustin Scalbert; Helmut Sies; Stéphane Vidry

Human studies provide evidence for beneficial effects of polyphenol-rich foods on cardiovascular health. The antioxidant activity of polyphenols potentially explains these effects, but is the antioxidant activity a reliable predictor for these effects? An International Life Sciences Institute Europe working group addressed this question and explored the potential of antioxidant claims for polyphenols in relation to cardiovascular health by using the so-called Process for the Assessment of Scientific Support for Claims on Foods project criteria. In this process, analytical aspects of polyphenols, their occurrence in foods, dietary intake, and bioavailability were reviewed. Human studies on polyphenols and cardiovascular health were reviewed together with methods for biomarkers of oxidative damage and total antioxidant capacity (TAC). In retrospective studies, F2-isoprostanes and oxidized LDL, the most reliable biomarkers of lipid peroxidation, and measures for TAC showed the expected differences between cardiovascular disease patients and healthy controls, but prospective studies are lacking, and a causal relationship between these biomarkers and cardiovascular health could not be established. Therefore, the physiological relevance of a potential change in these biomarkers is unclear. We found limited evidence that some types of polyphenol-rich products modify these biomarkers in humans. A direct antioxidant effect of polyphenols in vivo is questionable, however, because concentrations in blood are low compared with other antioxidants and extensive metabolism following ingestion lowers their antioxidant activity. Therefore, the biological relevance of direct antioxidant effects of polyphenols for cardiovascular health could not be established. Overall, although some polyphenol-rich foods exert beneficial effects on some biomarkers of cardiovascular health, there is no evidence that this is caused by improvements in antioxidant function biomarkers (oxidative damage or antioxidant capacity).


Journal of Proteome Research | 2013

Mass Spectrometry-based Metabolomics for the Discovery of Biomarkers of Fruit and Vegetable Intake: Citrus Fruit as a Case Study

Estelle Pujos-Guillot; Jane Hubert; Jean-François Martin; Bernard Lyan; Mercedes Quintana; Sylvain Claude; Bruno Chabanas; Joseph A. Rothwell; Catherine Bennetau-Pelissero; Augustin Scalbert; Blandine Comte; Serge Hercberg; Christine Morand; Pilar Galan; Claudine Manach

Elucidation of the relationships between genotype, diet, and health requires accurate dietary assessment. In intervention and epidemiological studies, dietary assessment usually relies on questionnaires, which are susceptible to recall bias. An alternative approach is to quantify biomarkers of intake in biofluids, but few such markers have been validated so far. Here we describe the use of metabolomics for the discovery of nutritional biomarkers, using citrus fruits as a case study. Three study designs were compared. Urinary metabolomes were profiled for volunteers that had (a) consumed an acute dose of orange or grapefruit juice, (b) consumed orange juice regularly for one month, and (c) reported high or low consumption of citrus products for a large cohort study. Some signals were found to reflect citrus consumption in all three studies. Proline betaine and flavanone glucuronides were identified as known biomarkers, but various other biomarkers were revealed. Further, many signals that increased after citrus intake in the acute study were not sensitive enough to discriminate high and low citrus consumers in the cohort study. We propose that urine profiling of cohort subjects stratified by consumption is an effective strategy for discovery of sensitive biomarkers of consumption for a wide range of foods.


Hypertension | 2008

Neonatal Oxygen Exposure in Rats Leads to Cardiovascular and Renal Alterations in Adulthood

Catherine Yzydorczyk; Blandine Comte; Gilles Cambonie; Jean-Claude Lavoie; Nathalie Germain; Yue Ting Shun; Julie Wolff; Christian F. Deschepper; Rhian M. Touyz; Martine Lelièvre-Pegorier; Anne Monique Nuyt

Long-term vascular and renal consequences of neonatal oxidative injury are unknown. Using a rat model, we sought to investigate whether vascular function and blood pressure are altered in adult rats exposed to hyperoxic conditions as neonates. We also questioned whether neonatal O2 injury causes long-term renal damage, important in the pathogenesis of hypertension. Sprague-Dawley pups were kept with their mother in 80% O2 or room air from days 3 to 10 postnatal, and blood pressure was measured (tail cuff) from weeks 7 to 15. Rats were euthanized, and vascular reactivity (ex vivo carotid rings), oxidative stress (lucigenin chemiluminescence and dihydroethidium fluorescence), microvascular density (tibialis anterior muscle), and nephron count were studied. In male and female rats exposed to O2 as newborns, systolic and diastolic blood pressures were increased (by an average of 15 mm Hg); ex vivo, maximal vasoconstriction (both genders) and sensitivity (males only) specific to angiotensin II were increased; endothelium-dependant vasodilatation to carbachol but not to NO-donor sodium nitroprussiate was impaired; superoxide dismutase analogue prevented vascular dysfunction to angiotensin II and carbachol; vascular superoxide production was higher; and capillary density (by 30%) and number of nephrons per kidney (by 25%) were decreased. These data suggest that neonatal hyperoxia leads in the adult rat to increased blood pressure, vascular dysfunction, microvascular rarefaction, and reduced nephron number in both genders. Our findings support the hypothesis of developmental programming of adult cardiovascular and renal diseases and provide new insights into the potential role of oxidative stress in this process.


PLOS ONE | 2014

Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention.

Cécile Gladine; John W. Newman; Thierry Durand; Theresa L. Pedersen; Jean-Marie Galano; Céline Demougeot; Olivier Berdeaux; Estelle Pujos-Guillot; Andrzej Mazur; Blandine Comte

Abstract The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR−/−) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R2 = 0.97, p = 0.02), triglyceridemia (R2 = 0.97, p = 0.01) and cholesterolemia (R2 = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.


PLOS ONE | 2014

New biomarkers of coffee consumption identified by the non-targeted metabolomic profiling of cohort study subjects.

Joseph A. Rothwell; Yoann Fillâtre; Jean-François Martin; Bernard Lyan; Estelle Pujos-Guillot; L. Fezeu; Serge Hercberg; Blandine Comte; Pilar Galan; Mathilde Touvier; Claudine Manach

Coffee contains various bioactives implicated with human health and disease risk. To accurately assess the effects of overall consumption upon health and disease, individual intake must be measured in large epidemiological studies. Metabolomics has emerged as a powerful approach to discover biomarkers of intake for a large range of foods. Here we report the profiling of the urinary metabolome of cohort study subjects to search for new biomarkers of coffee intake. Using repeated 24-hour dietary records and a food frequency questionnaire, 20 high coffee consumers (183–540 mL/d) and 19 low consumers were selected from the French SU.VI.MAX2 cohort. Morning spot urine samples from each subject were profiled by high-resolution mass spectrometry. Partial least-square discriminant analysis of multidimensional liquid chromatography-mass spectrometry data clearly distinguished high consumers from low via 132 significant (p-value<0.05) discriminating features. Ion clusters whose intensities were most elevated in the high consumers were annotated using online and in-house databases and their identities checked using commercial standards and MS-MS fragmentation. The best discriminants, and thus potential markers of coffee consumption, were the glucuronide of the diterpenoid atractyligenin, the diketopiperazine cyclo(isoleucyl-prolyl), and the alkaloid trigonelline. Some caffeine metabolites, such as 1-methylxanthine, were also among the discriminants, however caffeine may be consumed from other sources and its metabolism is subject to inter-individual variation. Receiver operating characteristics curve analysis showed that the biomarkers identified could be used effectively in combination for increased sensitivity and specificity. Once validated in other cohorts or intervention studies, these specific single or combined biomarkers will become a valuable alternative to assessment of coffee intake by dietary survey and finally lead to a better understanding of the health implications of coffee consumption.


Journal of Nutritional Biochemistry | 2015

DHA at nutritional doses restores insulin sensitivity in skeletal muscle by preventing lipotoxicity and inflammation

Frédéric Capel; Cécile Acquaviva; Elodie Pitois; Brigitte Laillet; Jean-Paul Rigaudière; Chrystèle Jouve; Corinne Pouyet; Cécile Gladine; Blandine Comte; Christine Vianey Saban; Béatrice Morio

Skeletal muscle plays a major role in the control of whole body glucose disposal in response to insulin stimulus. Excessive supply of fatty acids to this tissue triggers cellular and molecular disturbances leading to lipotoxicity, inflammation, mitochondrial dysfunctions, impaired insulin response and decreased glucose uptake. This study was conducted to analyze the preventive effect of docosahexaenoic acid (DHA), a long-chain polyunsaturated n-3 fatty acid, against insulin resistance, lipotoxicity and inflammation in skeletal muscle at doses compatible with nutritional supplementation. DHA (30 μM) prevented insulin resistance in C2C12 myotubes exposed to palmitate (500 μM) by decreasing protein kinase C (PKC)-θ activation and restoring cellular acylcarnitine profile, insulin-dependent AKT phosphorylation and glucose uptake. Furthermore, DHA protected C2C12 myotubes from palmitate- or lipopolysaccharide-induced increase in Ptgs2, interleukin 6 and tumor necrosis factor-α mRNA level, probably through the inhibition of p38 MAP kinase and c-Jun amino-terminal kinase. In LDLR -/- mice fed a high-cholesterol-high-sucrose diet, supplementation with DHA reaching up to 2% of daily energy intake enhanced the insulin-dependent AKT phosphorylation and reduced the PKC-θ activation in skeletal muscle. Therefore, DHA used at physiological doses participates in the regulation of muscle lipid and glucose metabolisms by preventing lipotoxicity and inflammation.


Journal of Nutritional Biochemistry | 2013

Resistant starch intake partly restores metabolic and inflammatory alterations in the liver of high-fat-diet-fed rats.

Sergio Polakof; María Elena Díaz-Rubio; Dominique Dardevet; Jean-François Martin; Estelle Pujos-Guillot; Augustin Scalbert; Jean-Louis Sébédio; Andrzej Mazur; Blandine Comte

Insulin resistance (IR) constitutes the most important feature of the metabolic syndrome, whose prevalence is highly associated to the consumption of Western diets. Resistant starch (RS) consumption has been shown to have beneficial metabolic effects, including improved insulin sensitivity, and glucose and lipid homeostasis. However, the mechanisms (especially at the molecular level) by which this takes place are still not completely known. In the present study, we aimed to evaluate the role of the liver in the ameliorated high-fat (HF)-induced IR status by RS. Thus, three groups of rats were fed either a control diet, or an HF diet containing or not RS. After 9 weeks of feeding, we evaluated the whole-body insulin sensitivity, and the hepatic glucose and lipid metabolism at the biochemical and molecular levels and the metabolome of the cecum content. We demonstrated for the first time that at least part of the beneficial effects of RS consumption in the context of an HF feeding can be driven by changes elicited at the hepatic level. The ability of the RS to correct the HF-induced dyslipidemia and the associated IR resulted from the return to the basal expression levels of transcription factors involved in lipogenesis (SREBP-1c), cholesterol metabolism (SREBP-2, LXRs) and fatty acid oxidation (PPARα). Moreover, the RS feeding was able to correct the HF-induced reduction in hepatic glucose phosphorylation and muscle glucose transport, improving glucose tolerance. Finally, as a whole, the improved hepatic metabolism seemed to be the result of an ameliorated inflammatory status.


Clinical Nutrition | 2012

The mode of administration of total parenteral nutrition and nature of lipid content influence the generation of peroxides and aldehydes

Khalil Miloudi; Blandine Comte; Thérèse Rouleau; Alain Montoudis; Emile Levy; Jean-Claude Lavoie

BACKGROUND & AIMS The absence of light protection of neonatal total parenteral nutrition (PN) contributes to the generation of 4-hydroxynonenal and peroxides. 4-Hydroxynonenal is suspected to be involved in PN-related liver complications. AIMS To find a practical modality to reduce 4-hydroxynonenal in PN and assess in vivo the impact of PN containing low 4-hydroxynonenal concentration. METHODS Six modalities of delivering PN were compared for the in vitro generation of peroxides and 4-hydroxynonenal: 1) MV-AA-L: light-protected (-L) solution containing multivitamin (MV) mixed with amino acids + dextrose (AA); 2) MV-AA+L: MV-AA without photo-protection (+L); 3) MV-LIP+L: MV mixed with lipid emulsion (LIP). LIP was a) Intralipid20%(®) or b) Omegaven(®). Hepatic markers of oxidative stress (glutathione, F(2α)-isoprostanes, GS-HNE) and inflammation (mRNA of TNF-α and IL-1) were measured in newborn guinea pigs infused during 4-days with MV-AA+L compounded with Intralipid20%(®) or Omegaven(®). RESULTS Hydroperoxides and 4-hydroxynonenal were the lowest in MV-AA-L and the highest in MV-LIP+L. MV-AA+L with Omegaven(®) was associated with the lowest levels of markers of oxidative stress and inflammation. CONCLUSION Compared to Intralipid20%(®), Omegaven(®) reduces oxidative stress associated with PN and prevents liver inflammation. These findings offer an alternative strategy to light protection of PN, which in the clinical setting is a cumbersome modality.


British Journal of Nutrition | 2012

Increasing intake of long-chain n -3 PUFA enhances lipoperoxidation and modulates hepatic gene expression in a dose-dependent manner

Cécile Gladine; Nicole C. Roy; Jean-Paul Rigaudière; Brigitte Laillet; Georges Da Silva; Charlotte Joly; Estelle Pujos-Guillot; Béatrice Morio; Christine Feillet-Coudray; Warren C. McNabb; Jean-Michel Chardigny; Blandine Comte

Long-chain (LC) n-3 PUFA have a broad range of biological properties that can be achieved at the gene expression level. This has been well described in liver, where LC n-3 PUFA modulate the expression of genes related to lipid metabolism. However, the complexity of biological pathway modulations and the nature of bioactive molecules are still under investigation. The present study aimed to investigate the dose-response effects of LC n-3 PUFA on the production of peroxidised metabolites, as potential bioactive molecules, and on global gene expression in liver. Hypercholesterolaemic rabbits received by daily oral administration (7 weeks) either oleic acid-rich oil or a mixture of oils providing 0.1, 0.5 or 1 % (groups 1, 2 and 3 respectively) of energy as DHA. Levels of specific peroxidised metabolites, namely 4-hydroxyhexenal (4-HHE)-protein adducts, issued from LC n-3 PUFA were measured by GC/MS/MS in liver in parallel to transcription profiling. The intake of LC n-3 PUFA increased, in a dose-dependent manner, the hepatic production of 4-HHE. At the highest dose, LC n-3 PUFA provoked an accumulation of TAG in liver, which can be directly linked to increased mRNA levels of lipoprotein hepatic receptors (LDL-receptor and VLDL-receptor). In groups 1 and 2, the mRNA levels of microsomal TAG transfer protein decreased, suggesting a possible new mechanism to reduce VLDL secretion. These modulations of genes related to lipoprotein metabolism were independent of PPARα signalling but were probably linked to the activation of the farnesol X receptor pathway by LC n-3 PUFA and/or their metabolites such as HHE.


PLOS ONE | 2014

Remodeling of Aorta Extracellular Matrix as a Result of Transient High Oxygen Exposure in Newborn Rats: Implication for Arterial Rigidity and Hypertension Risk

Fanny Huyard; Catherine Yzydorczyk; Michele M. Castro; Anik Cloutier; Mariane Bertagnolli; Hervé Sartelet; Nathalie Germain; Blandine Comte; Richard Schulz; Denis deBlois; Anne Monique Nuyt

Neonatal high-oxygen exposure leads to elevated blood pressure, microvascular rarefaction, vascular dysfunction and arterial (aorta) rigidity in adult rats. Whether structural changes are present in the matrix of aorta wall is unknown. Considering that elastin synthesis peaks in late fetal life in humans, and early postnatal life in rodents, we postulated that transient neonatal high-oxygen exposure can trigger premature vascular remodelling. Sprague Dawley rat pups were exposed from days 3 to 10 after birth to 80% oxygen (vs. room air control) and were studied at 4 weeks. Blood pressure and vasomotor response of the aorta to angiotensin II and to the acetylcholine analogue carbachol were not different between groups. Vascular superoxide anion production was similar between groups. There was no difference between groups in aortic cross sectional area, smooth muscle cell number or media/lumen ratio. In oxygen-exposed rats, aorta elastin/collagen content ratio was significantly decreased, the expression of elastinolytic cathepsin S was increased whereas collagenolytic cathepsin K was decreased. By immunofluorescence we observed an increase in MMP-2 and TIMP-1 staining in aortas of oxygen-exposed rats whereas TIMP-2 staining was reduced, indicating a shift in the balance towards degradation of the extra-cellular matrix and increased deposition of collagen. There was no significant difference in MMP-2 activity between groups as determined by gelatin zymography. Overall, these findings indicate that transient neonatal high oxygen exposure leads to vascular wall alterations (decreased elastin/collagen ratio and a shift in the balance towards increased deposition of collagen) which are associated with increased rigidity. Importantly, these changes are present prior to the elevation of blood pressure and vascular dysfunction in this model, and may therefore be contributory.

Collaboration


Dive into the Blandine Comte's collaboration.

Top Co-Authors

Avatar

Estelle Pujos-Guillot

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cécile Gladine

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Andrzej Mazur

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mélanie Pétéra

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Patrick Brachet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sergio Polakof

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Augustin Scalbert

International Agency for Research on Cancer

View shared research outputs
Top Co-Authors

Avatar

Claudine Manach

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Didier Rémond

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge