Blanka Králová
Institute of Chemical Technology in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blanka Králová.
Carbohydrate Research | 2010
Vojtěch Spiwok; Blanka Králová; Igor Tvaroška
Modelling of carbohydrate conformations is a challenging task for force field developers. Three carbohydrate force fields, namely GLYCAM06, GROMOS 45a4 and OPLS were evaluated. Free energies of different ring conformations of beta-D-glucopyranose were calculated using metadynamics in vacuum as well as in explicitly modelled water. All three force fields model the (4)C(1) conformation as the most stable by at least 6kJ/mol, as compared to other conformations. Interconversion from the (4)C(1) to any other conformation is associated with a barrier of no lower than 26kJ/mol. The free energy surface calculated in the GLYCAM06 force field is in remarkably good agreement with the recent Car-Parrinello metadynamics study. The effect of a water environment is relatively low and analogous in all tested force fields. Namely, the presence of water stabilizes the upper-left ((3,O)B) versus bottom-right (B(3,O)) area of Stoddards plot, relative to the situation in vacuum. Comparison of free and potential surfaces is also provided for vacuum calculations.
Carbohydrate Research | 1999
Šárka Malá; Hana Dvořáková; Richard Hrabal; Blanka Králová
alpha-Glucosidase from two microbial sources, Bacillus stearothermophilus and Brewers yeast, has been used to catalyze transglycosylation reactions and a comparative study was carried out to determine the regioselectivity of this reaction. Bacterial alpha-glucosidase exhibited higher transfer activity with maltose and was able to synthesize tri- and tetrasaccharides in high yield (27%). In the case of yeast enzyme, only trisaccharides were synthesized in lower yield. Structure analysis of transglycosylation products by means of GC-MS and NMR spectroscopy revealed a correlation between the hydrolytic substrate specificity and the regioselectivity of transglycosylation reaction. Higher substrate specificity of bacterial enzyme, however, influenced its transglucosylation activity toward other saccharide acceptors.
Natural Product Reports | 2011
Ilona Chlubnova; Balla Sylla; Caroline Nugier-Chauvin; Richard Daniellou; Laurent Legentil; Blanka Králová; Vincent Ferrières
Covering: up to the end of 2010 This review focuses on recent discoveries performed in the field of glycans and related glycoconjugates that have demonstrated immunomodulatory activities. Their tremendous potential for application, as well as some limitations, are also described.
Journal of Chemical Physics | 2011
Vojtěch Spiwok; Blanka Králová
Atomic motions in molecules are not linear. This infers that nonlinear dimensionality reduction methods can outperform linear ones in analysis of collective atomic motions. In addition, nonlinear collective motions can be used as potentially efficient guides for biased simulation techniques. Here we present a simulation with a bias potential acting in the directions of collective motions determined by a nonlinear dimensionality reduction method. Ad hoc generated conformations of trans,trans-1,2,4-trifluorocyclooctane were analyzed by Isomap method to map these 72-dimensional coordinates to three dimensions, as described by Brown and co-workers [J. Chem. Phys. 129, 064118 (2008)]. Metadynamics employing the three-dimensional embeddings as collective variables was applied to explore all relevant conformations of the studied system and to calculate its conformational free energy surface. The method sampled all relevant conformations (boat, boat-chair, and crown) and corresponding transition structures inaccessible by an unbiased simulation. This scheme allows to use essentially any parameter of the system as a collective variable in biased simulations. Moreover, the scheme we used for mapping out-of-sample conformations from the 72D to 3D space can be used as a general purpose mapping for dimensionality reduction, beyond the context of molecular modeling.
Organic and Biomolecular Chemistry | 2010
Ilona Chlubnova; Dominik Filipp; Vojtech Spiwok; Hana Dvořáková; Richard Daniellou; Caroline Nugier-Chauvin; Blanka Králová; Vincent Ferrières
D-Galactofuranosyl-containing conjugates are ubiquitous in many pathogenic microorganisms, but completely absent from mammals. As they may constitute interesting pharmacophores, recent works have been dedicated to their preparation. Besides well-reported chemical procedures, enzymatic approaches are still limited, mainly due to the lack of the corresponding biocatalysts. Based on the similarity between chemical structures, the arabinofuranosyl hydrolase Araf51 from Clostridium thermocellum was expected to recognize both the L-Araf motif and its D-Galf analogue. Molecular dynamics and STD-NMR were firstly used to confirm this hypothesis and increase our knowledge of the active site. Interestingly, this arabinofuranosidase was not only able to hydrolyze galactosyl derivatives, but was also really efficient in catalyzing oligomerisations using p-nitrophenyl furanosides as donors. The structures of the products obtained were determined using mass spectrometry and NMR. Amongst them, all the possible regioisomers of di-arabino and -galactofuranosides were synthesized, and the ratio of each regioisomer was easily tuned with respect to the reaction time. Especially, the galactofuranobioside displaying the biologically relevant sequence beta-D-Galf-(1,6)-beta-D-Galf was enzymatically prepared for the first time. All fractions going from di- to penta-arabino- and galactofuranosides were tested for their ability in eliciting the production of TNF-alpha. Interesting immunological properties were observed with arabinofuranosides as short as three sugar residues.
Journal of Molecular Modeling | 2008
Vojtěch Spiwok; Blanka Králová; Igor Tvaroška
AbstractModelling of conformational changes in biopolymers is one of the greatest challenges of molecular biophysics. Metadynamics is a recently introduced free energy modelling technique that enhances sampling of configurational (e.g. conformational) space within a molecular dynamics simulation. This enhancement is achieved by the addition of a history-dependent bias potential, which drives the system from previously visited regions. Discontinuous metadynamics in the space of essential dynamics eigenvectors (collective motions) has been proposed and tested in conformational change modelling. Here, we present an implementation of two continuous formulations of metadynamics in the essential subspace. The method was performed in a modified version of the molecular dynamics package GROMACS. These implementations were tested on conformational changes in cyclohexane, alanine dipeptide (terminally blocked alanine, Ace-Ala-Nme) and SH3 domain. The results illustrate that metadynamics in the space of essential coordinates can accurately model free energy surfaces associated with conformational changes. FigureThe conformational free energy surface of cyclohexane in the space of the two most intensive collective motions.
Journal of Agricultural and Food Chemistry | 2008
Zita Purkrtova; Christel Le Bon; Blanka Králová; Marie-Hélène Ropers; Marc Anton; Thierry Chardot
A non-radioactive blot binding assay has proved the capacity of a purified recombinant form of Arabidopsis thaliana caleosin (AtClo1), a key protein of this plant oil body, to bind calcium. Calcium affected recombinant caleosin aggregation state, solubility, and electrophoretic mobility on SDS-PAGE. The effect of calcium on interfacial behavior of recombinant caleosin was studied at three interfaces: air/water (A/W), purified oil/water (O/W), and air/phosholipid/water (A/PLs/W). Recombinant caleosin was able to decrease interfacial tension (IFT) at A/W and O/W interfaces as a function of concentration and calcium, whereas no interaction was detected at the A/PLs/W interface. Effect of calcium was time dependent, and its amplitude strongly varied with the interface considered. Reconstituted oil bodies were used to prove the involvement of recombinant caleosin in their calcium-driven aggregation and coalescence. Calcium ions at concentration as low as 100 nM were able to strongly modify the shape and aggregation state of purified oil bodies, as well as their behavior within a monolayer, reflecting potentially profound changes in their structure and dynamic.
Glycobiology | 2013
Eva Benešová; Petra Lipovová; Hana Dvořáková; Blanka Králová
In this work, focused on possible application of α-L-fucosidases from bacterial sources in the synthesis of α-L-fucosylated glycoconjugates, several nonpathogenic aerobic bacterial strains were screened for α-L-fucosidase activity. Among them Paenibacillus thiaminolyticus was confirmed as a potent producer of enzyme with the ability to cleave the chromogenic substrate p-nitrophenyl α-L-fucopyranoside. The gene encoding α-L-fucosidase was found using the genomic library of P. thiaminolyticus constructed in the cells of Escherichia coli DH5α and sequenced (EMBL database: FN869117, carbohydrate-active enzymes database: Glycosidase family 29). The enzyme was expressed in the form of polyhistidine-tagged protein (51.2 kDa) in Escherichia coli BL21 (DE3) cells, purified using nickel-nitrilotriacetic acid agarose affinity chromatography and characterized using the chromogenic substrate p-nitrophenyl α-L-fucopyranoside (K(m) = (0.44 ± 0.02) mmol/L, K(S) = (83 ± 8) mmol/L (substrate inhibition), pH(optimum) = 8.2, t(optimum) = 48°C). By testing the ability of the enzyme to catalyze the transfer of α-L-fucosyl moiety to different types of acceptor molecules, it was confirmed that the enzyme is able to catalyze the formation of α-L-fucosylated p-nitrophenyl glycopyranosides containing α-D-galactopyranosidic, α-D-glucopyranosidic, α-D-mannopyranosidic or α-L-fucopyranosidic moiety. This enzyme is also able to catalyze α-L-fucosylation of aliphatic alcohols of different lenghs of alkyl chain and hydroxyl group positions (methanol, ethanol, 1-propanol, 2-propanol and 1-octanol) and hydroxyl group-containing amino acid derivatives (N-(tert-butoxycarbonyl)-L-serine methyl ester and N-(tert-butoxycarbonyl)-L-threonine methyl ester). These results indicate the possibility of exploiting this enzyme in the synthesis of different types of α-L-fucosylated molecules representing compounds with potential application in biotechnology and the pharmaceutical industry.
Glycobiology | 2010
Eva Benešová; Petra Lipovová; Hana Dvořáková; Blanka Králová
A genomic library of bacterial strain Paenibacillus thiaminolyticus was constructed and the plasmid DNA of the clone, containing the gene encoding beta-d-galactosidase with beta-d-fucosidase activity, detected by 5-bromo-4-chloro-3-indoxyl beta-d-galactopyranoside, was sequenced. Cells of Escherichia coli BL21 (DE3) were used for production of the enzyme in the form of a histidine-tagged protein. This recombinant fusion protein was purified using Ni-NTA agarose affinity chromatography and characterized by using p-nitrophenyl beta-d-fucopyranoside (K(m) value of (1.18 +/- 0.06) mmol/L), p-nitrophenyl beta-d-galactopyranoside (K(m) value of (250 +/- 40) mmol/L), p-nitrophenyl beta-d-glucopyranoside (K(m) value of (77 +/- 6) mmol/L), and lactose (K(m) value of (206 +/- 5) mmol/L) as substrates. Optimal pH and temperature were estimated as 5.5 and 65 degrees C, respectively. According to the amino acid sequence, the molecular weight of the fusion protein was calculated to be 68.6 kDa and gel filtration chromatography confirmed the presence of the enzyme in a monomeric form. In the following step, its ability to catalyze transfucosylation reactions was tested. The enzyme was able to catalyze the transfer of fucosyl moiety to different p-nitrophenyl glycopyranosides (producing p-nitrophenyl beta-d-fucopyranosyl-(1,3)-beta-d-fucopyranoside, p-nitrophenyl beta-d-fucopyranosyl-(1,3)-alpha-d-glucopyranoside, p-nitrophenyl beta-d-fucopyranosyl-(1,3)-alpha-d-mannopyranoside, and p-nitrophenyl beta-d-fucopyranosyl-(1,6)-alpha-d-galactopyranoside) and alcohols (producing methyl beta-d-fucopyranoside, ethyl beta-d-fucopyranoside, 1-propyl beta-d-fucopyranoside, 2-propyl beta-d-fucopyranoside, 1-octyl beta-d-fucopyranoside, and 2-octyl beta-d-fucopyranoside). These results indicate the possibility of utilizing this enzyme as a promising tool for enzymatic synthesis of beta-d-fucosylated molecules.
Journal of Physical Chemistry B | 2013
Oborský P; Tvaroška I; Blanka Králová; Spiwok
Iduronic acid (IdoA), unlike most other monosaccharides, can adopt different ring conformations, depending on the context of the molecular structure. Accurate modeling of this building block is essential for understanding the role of glycosaminoglycans and other glycoconjugates. Here, we use metadynamics to predict equilibria of (1)C(4), (4)C(1) and (2)S(O) conformations of α-L-IdoA-OMe and α-L-IdoA2S-OMe. Different schemes of scaling of atoms separated by three bonds (1-4 interaction) were tested. It was found that scaling (reduction) of 1-4 electrostatic interactions significantly changes conformational preferences toward the (4)C(1) conformation. More interestingly, scaling of 1-4 van der Waals interaction favors skew-boat conformations. This shows that a minor modification of noncovalent 1-4 interactions parameters can provide a good agreement between populations of conformers of iduronic acid in water from simulations and experiments.