Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blanka Říhová is active.

Publication


Featured researches published by Blanka Říhová.


Journal of Controlled Release | 2000

Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation.

Karel Ulbrich; Vladimir Subr; J. Strohalm; D Plocová; Markéta Jelínková; Blanka Říhová

This paper describes the synthesis, physico-chemical characteristics and results of selected biological tests of conjugates of antibodies or proteins with poly(HPMA) or with poly(HPMA) carriers of anti-cancer drug doxorubicin, designed for targeted cancer therapy. Two types of conjugates differing in the method of conjugation of polymer with protein were synthesized. In the first, protein is attached to the polymer via an oligopeptide sequence in the side chain of the polymer backbone and, in the second, the polymer is attached to protein via its end-chain functional group. Conjugation of an antibody with poly(HPMA) does not influence the binding activity of the antibody for cell surface antigen. The physico-chemical characteristics and biological activity of both systems depend on the detailed structure of the polymer, the type of antibody or protein moiety and the structure of the whole system.


Advanced Drug Delivery Reviews | 1996

Biocompatibility of biomaterials: hemocompatibility, immunocompatiblity and biocompatibility of solid polymeric materials and soluble targetable polymeric carriers

Blanka Říhová

Abstract The biocompatibility and immunocompatibility of polymeric materials is of fundamental importance for their possible therapeutic uses. Aspects of biocompatibility of solid polymeric materials and soluble polymeric materials differ. Solid materials are used in polymer implants, as membranes in kidney dialysis and cardiopulmonary bypass, for polymer coating of other materials to increase their biocompatibility, for encapsulation of cells producing hormones and other soluble factors, or as microspheres used for antigen or drug release. Soluble polymeric materials are mostly used as carriers of drugs, hormones, growth factors, enzymes and other active substances. Bio-and immunocompatibility comprises a complex response which depends both on the physico-chemical characteristics of the medical material and on the hereditary and acquired ability of the recipient to react.


Advanced Drug Delivery Reviews | 2000

Immunocompatibility and biocompatibility of cell delivery systems.

Blanka Říhová

Immunoisolation therapy overcomes important disadvantages of implanting free cells. By mechanically blocking immune attacks, synthetic membranes around grafted cells should obviate the need for immunosuppression. The membrane used for encapsulation must be biocompatible and immunocompatible to the recipient and also to the encapsulated graft. The ability of the host to accept the implanted graft depends not only on the material used for encapsulation, but also on the defense reaction of the recipient, which is very individual. Such a reaction usually starts as absorption of cell-adhesive proteins, immunoglobulins, complement components, growth factors and some other proteins on the surface of the device. The absorption of proteins is difficult to avoid, but the amount and specificity of absorbed proteins can be controlled to some extent by selection and modification of the device material. If the adsorption of proteins to the surface of the implanted material is reduced, the overgrowth of the device with fibroblast-like and macrophage-like cells is also reduced. Cell adhesion at the surface of the implanted device is, in addition to the selected polymeric material, greatly influenced by the device content. Xenografts trigger a more vigorous inflammatory reaction than allografts, most probably due to the release of antigenic products from encapsulated deteriorated and dying cells which diffuse through the membrane and activate adhering immune cells. There is an evident effect of autoimmune status on the fate of the encapsulated graft. While encapsulated xenogeneic islets readily reverse streptozotocin-induced diabetes in mice, the same xenografts are short-functioning in NOD autoimmune diabetes-prone mice. Autoantibodies, to which most devices are impermeable, are not involved. Among the cytotoxic factors which are responsible for the limited survival of the encapsulated graft the most important are cytokines and perhaps some other low-molecular-weight factors released by activated macrophages at the surface of the encapsulating membrane.


Journal of Controlled Release | 2011

Biodegradable star HPMA polymer–drug conjugates: Biodegradability, distribution and anti-tumor efficacy

Tomáš Etrych; Lubomír Kovář; J. Strohalm; Petr Chytil; Blanka Říhová; Karel Ulbrich

Herein, new biodegradable star polymer-doxorubicin conjugates designed for passive tumor targeting were investigated, and their synthesis, physico-chemical characterization, drug release, biodegradation, biodistribution and in vivo anti-tumor efficacy are described. In the conjugates, the core formed by poly(amidoamine) (PAMAM) dendrimers was grafted with semitelechelic N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers bearing doxorubicin (Dox) attached by hydrazone bonds, which enabled intracellular pH-controlled drug release. The described synthesis facilitated the preparation of biodegradable polymer conjugates in a broad range of molecular weights (200-1000g/mol) while still maintaining low polydispersity (~1.7). The polymer grafts were attached to the dendrimers through either stable amide bonds or enzymatically or reductively degradable spacers, which enabled intracellular degradation of the high-molecular-weight polymer carrier to excretable products. Biodegradability tests in suspensions of EL4 T-cell lymphoma cells showed that the rate of degradation was much faster for reductively degradable conjugates (close to completion within 24h of incubation) than for conjugates linked via an enzymatically degradable oligopeptide GFLG sequence (slow degradation taking several days). This finding was likely due to the differences in steric hindrance in terms of the accessibility of the small molecule glutathione and the bulky enzyme cathepsin B to the polymer substrate. Regarding drug release, the conjugates were fairly stable in buffer at pH 7.4 (model of blood stream) but released doxorubicin under mild acidic conditions that model the tumor cell microenvironment. The star polymer-Dox conjugates exhibited significantly prolonged blood circulation and enhanced tumor accumulation in tumor-bearing mice, indicating the important role of the EPR effect in its anti-cancer activity. The star polymer conjugates showed prominently higher in vivo anti-tumor activities than the free drug or linear polymer conjugate when tested in mice bearing EL4 T-cell lymphoma, with a significant number of long-term surviving (LTS). Based on the results, we conclude that a M(w) of HPMA copolymers of 200,000 to 600,000g/mol is optimal for polymer carriers designed for the efficient passive targeting to solid tumors. In addition, an expressive therapy-dependent stimulation of the immune system was observed.


Journal of Drug Targeting | 2004

Antibody-targeted Polymer–doxorubicin Conjugates with pH-controlled Activation

Karel Ulbrich; T. Etrych; Petr Chytil; Markéta Jelínková; Blanka Říhová

The paper is dealing with the synthesis and properties of new non-targeted or antibody-targeted polymer drug conjugates, bearing doxorubicin (DOX) attached via a spacer susceptible to pH-controlled hydrolysis (hydrazone conjugates), designed as anticancer drugs facilitating site-specific therapy. These conjugates are stable in a pH 7.4 buffer, modeling conditions during transport in the body, but release DOX and activate it inside target cells as a result of pH changes when going from outside to inside the cells. Conjugates containing an antibody directed against T lymphocytes bind effectively and specifically T cell lymphoma EL 4 cells. Cytotoxicity of the hydrazone conjugates is higher than that of classic conjugates, depending on the detailed structure of the polymer, the spacer between the drug and polymer carrier and method of antibody conjugation. Cytotoxicity of some of the conjugates is comparable even with that of the free drug. In both protective and therapeutic regimes of drug administration, the in vivo anti-tumor activity of the conjugates containing DOX was enhanced with long-term survivors (T-cell lymphoma EL 4, C57BL/6 mice) in comparison with much less effective free DOX or a classic P(N-(2-hydroxypropyl)methacrylamide)HPMA–DOX conjugate (already clinically tested).


Journal of Controlled Release | 2008

New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting

Petr Chytil; T. Etrych; Čestmír Koňák; Milada Šírová; Tomas Mrkvan; J. Bouček; Blanka Říhová; Karel Ulbrich

Various conjugates of anticancer drug doxorubicin (Dox) covalently bound by the hydrolytically degradable hydrazone bond to the drug carrier based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers were synthesised. Structure of the conjugates differed in the type and the content of hydrophobic substituent (dodecyl, oleic acid and cholesterol moieties) introduced into the polymer structure. In aqueous solutions the conjugates self-assembled into high-molecular-weight supramolecular structures, such as polymeric micelles or stable hydrophilic nanoparticles 13-37 nm in diameter, depending on the type and the content of hydrophobic substituents. Treatment of mice bearing EL-4 T cell lymphoma with the conjugates in the therapeutic regime of drug administration (i.v.) resulted in significant tumour regression with up to 100% of long-term survivors, depending on the dose and the detailed structure of the carrier. The nanoparticles formed by the conjugate bearing cholesterol moiety exhibited prolonged blood circulation and enhanced tumour accumulation indicating an important role of the EPR effect in excellent anticancer activity of the conjugate.


Journal of Controlled Release | 2012

HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity.

Tomáš Etrych; Vladimir Subr; J. Strohalm; Milada Šírová; Blanka Říhová; Karel Ulbrich

The molecular weight and molecular architecture of soluble polymer drug carriers significantly influence the biodistribution and anti-tumour activities of their doxorubicin (DOX) conjugates in tumour-bearing mice. Biodistribution of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-DOX conjugates of linear and star architectures were compared in EL4 T-cell lymphoma-bearing mice. Biodistribution, including tumour accumulation, and anti-tumour activity of the conjugates strongly depended on conjugate molecular weight (MW), polydispersity, hydrodynamic radius (R(h)) and molecular architecture. With increasing MW, renal clearance decreased, and the conjugates displayed extended blood circulation and enhanced tumour accumulation. The linear conjugates with flexible polymer chains were eliminated by kidney clearance more quickly than the highly branched star conjugates with comparable MWs. Interestingly, the data suggested different mechanisms of renal filtration for star and linear conjugates. Only star conjugates with MWs below 50,000g.mo(-1) were removed by kidney filtration, while linear polymer conjugates with MWs near 70,000g.mol(-1), exceeding the generally accepted limit for renal elimination, were detected in the urine 36-96h after injection. Additionally, survival of tumour-bearing mice was strongly dependent on molecular weight and polymer conjugate architecture. Treatment of mice with the lower MW conjugate at a dose of 10mg DOX eq./kg resulted in 12% long-term surviving animals, while treatment with the corresponding star conjugate enabled 75% survival of animals.


Journal of Controlled Release | 2002

Differences in the intracellular fate of free and polymer-bound doxorubicin.

M Št’astný; Tomáš Etrych; Vladimir Subr; J. Strohalm; Karel Ulbrich; Blanka Říhová

Internalization and subcellular fate of free doxorubicin or its polymeric conjugates based on poly N-(2-hydroxypropyl)methacrylamide (pHPMA), either non-targeted or targeted with anti-Thy1.2 or anti-CD71 monoclonal antibody was tested on EL-4 mouse T-cell lymphoma, SW620 human colorectal carcinoma and OVCAR-3 human ovarian adenocarcinoma. Doxorubicin fluorescence allowed us to follow the internalization and intracellular distribution of tested conjugates by laser scanning confocal microscopy and/or by fluorescent microscopy. Whereas free doxorubicin was always detectable only in the nuclei of treated cells, detectable fluorescence of doxorubicin bound to a polymeric carrier, targeted or non-targeted, was detectable up to 3 days of incubation only in the cytoplasmatic structures. While free doxorubicin causes apoptosis in the populations of tested cancer cell lines, significant number of apoptotic cells was never found in cell cultures exposed to targeted or non-targeted polymeric conjugates. In contrast to free doxorubicin, which is a strong inducer of p53 expression, increased p53 expression was never observed after the treatment with the polymeric drug. High-performance liquid chromatographic analysis shows that the percentage of cleaved doxorubicin is very low even after 48 h of incubation of tested cells with the polymeric conjugate, and cannot be the only reason for the toxicity of the conjugate. We suggest that: (a) after the treatment with pHPMA-bound drug, the cells die by necrosis and (b) the toxicity of pHPMA-based conjugates is a combination of the toxic effect of released doxorubicin and the toxic effect of doxorubicin in polymer-bound form directed against cell membranes.


Journal of Controlled Release | 2003

Cytostatic and immunomobilizing activities of polymer-bound drugs: experimental and first clinical data

Blanka Říhová; J. Strohalm; Jana Prausová; Katerina Kubackova; Markéta Jelínková; Lad’ka Rozprimová; Milada Šírová; Dana Plocová; Tomáš Etrych; Vladimir Subr; Tomas Mrkvan; Marek Kovář; Karel Ulbrich

An N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carrier containing doxorubicin and human immunoglobulin as an actively/passively targeting moiety was used in four patients with generalized breast cancer resistant to standard cytotoxic chemotherapy. The dose and time schedule were deduced from a Phase I clinical trial in which doxorubicin bound to HPMA copolymer carrier (PK1) was tested. It was confirmed that the Dox-HPMA-HuIg conjugate is stable and doxorubicin remains in the peripheral blood with a small amount also in the urine, mostly in its polymer-bound form. More than 116 biochemical, immunological and hematological parameters were determined for blood samples taken from patients 24 h, 48 h, 72 h and 1 to 11 weeks after treatment. Depending on the patient, some parameters decreased permanently or temporarily to the normal level (CRP, C3, CA 72-4, beta(2)-microglobulin, ferritin, CEA, CA 125, CD4, CD8, CE19, CD16(+)56(+), leu, ery) and some moved markedly towards physiological values (AST, ALT, ALP, GMT, CA 15-3, NSE, AFP). While the number of peripheral blood reticulocytes was significantly decreased after treatment with the classical free drug, their number was not affected or was even elevated after treatment with Dox-HPMA-HuIg. Increased absolute numbers of CD16(+)56(+) and CD4(+) cells in the peripheral blood and activation of NK and LAK cells in all patients support data obtained in experimental animals, pointing to a dual, i.e. cytostatic and immunomobilizing character of Dox-HPMA conjugates containing a targeting immunoglobulin moiety.


Advanced Drug Delivery Reviews | 2002

Immunomodulating activities of soluble synthetic polymer-bound drugs.

Blanka Říhová

The introduction of a synthetic material into the body always affects different body systems, including the defense system. Synthetic polymers are usually thymus-independent antigens with only a limited ability to elicit antibody formation or to induce a cellular immune response against them. However, there are many other ways that they influence or can be used to influence the immune system of the host. Low-immunogenic water-soluble synthetic polymers sometimes exhibit significant immunomodulating activity, mainly concerning the activation/suppression of NK cells, LAK cells and macrophages. Some of them, such as poly(ethylene glycol) and poly[N-(2-hydroxypropyl)methacrylamide], can be used as effective protein carriers, as they are able to reduce the immunogenicity of conjugated proteins and/or to reduce non-specific uptake of liposome/nanoparticle-entrapped drugs and other therapeutic agents. Recently, the development of vaccine delivery systems prepared from biodegradable and biocompatible water-soluble synthetic polymers, microspheres, liposomes and/or nanoparticles has received considerable attention, as they can be tailored to meet the specific physical, chemical, and immunogenic requirements of a particular antigen and some of them can also act as adjuvants.

Collaboration


Dive into the Blanka Říhová's collaboration.

Top Co-Authors

Avatar

Karel Ulbrich

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

J. Strohalm

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Markéta Jelínková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Tomáš Etrych

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vladimir Subr

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Petr Chytil

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lubomír Kovář

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Marek Kovář

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

T. Etrych

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Milada Šírová

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge