Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Blanton S. Tolbert is active.

Publication


Featured researches published by Blanton S. Tolbert.


Journal of Biomolecular NMR | 2010

Major groove width variations in RNA structures determined by NMR and impact of 13C residual chemical shift anisotropy and 1H–13C residual dipolar coupling on refinement

Blanton S. Tolbert; Yasuyuki Miyazaki; Shawn Barton; Benyam Kinde; Patrice Starck; Rashmi Singh; Ad Bax; David A. Case; Michael F. Summers

Ribonucleic acid structure determination by NMR spectroscopy relies primarily on local structural restraints provided by 1H–1H NOEs and J-couplings. When employed loosely, these restraints are broadly compatible with A- and B-like helical geometries and give rise to calculated structures that are highly sensitive to the force fields employed during refinement. A survey of recently reported NMR structures reveals significant variations in helical parameters, particularly the major groove width. Although helical parameters observed in high-resolution X-ray crystal structures of isolated A-form RNA helices are sensitive to crystal packing effects, variations among the published X-ray structures are significantly smaller than those observed in NMR structures. Here we show that restraints derived from aromatic 1H–13C residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs) can overcome NMR restraint and force field deficiencies and afford structures with helical properties similar to those observed in high-resolution X-ray structures.


Biochemistry | 2011

Evidence for direct binding between HetR from Anabaena sp. PCC 7120 and PatS-5.

Erik A. Feldmann; Shuisong Ni; Indra D. Sahu; Clay H. Mishler; Douglas D. Risser; Jodi L. Murakami; Sasa K. Tom; Robert M. McCarrick; Gary A. Lorigan; Blanton S. Tolbert; Sean M. Callahan; Michael A. Kennedy

HetR, master regulator of heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120, stimulates heterocyst differentiation via transcriptional autoregulation and is negatively regulated by PatS and HetN, both of which contain the active pentapeptide RGSGR. However, the direct targets of PatS and HetN remain uncertain. Here, we report experimental evidence for direct binding between HetR and the C-terminal RGSGR pentapeptide, PatS-5. Strains with a hetR allele coding for conservative substitutions at residues 250-256 had altered patterns of heterocysts and, in some cases, reduced sensitivity to PatS-5. Cysteine scanning mutagenesis coupled with electron paramagnetic resonance (EPR) spectroscopy showed quenching of spin label motion at HetR amino acid 252 upon titration with PatS-5, indicating direct binding of PatS-5 to HetR. Gel shift assays indicated that PatS-5 disrupted binding of HetR to a 29 base pair inverted-repeat-containing DNA sequence upstream from hetP. Double electron-electron resonance EPR experiments confirmed that HetR existed as a dimer in solution and indicated that PatS-5 bound to HetR without disrupting the dimer form of HetR. Isothermal titration calorimetry experiments corroborated direct binding of PatS-5 to HetR with a K(d) of 227 nM and a 1:1 stoichiometry. Taken together, these results indicated that PatS-5 disrupted HetR binding to DNA through a direct HetR/PatS interaction. PatS-5 appeared to either bind in the vicinity of HetR amino acid L252 or, alternately, to bind in a remote site that leads to constrained motion of this amino acid via an allosteric effect or change in tertiary structure.


ChemBioChem | 2014

Regio-Selective Chemical-Enzymatic Synthesis of Pyrimidine Nucleotides Facilitates RNA Structure and Dynamics Studies

Luigi J. Alvarado; Regan M. LeBlanc; Andrew P. Longhini; Sarah C. Keane; Niyati Jain; Zehra F. Yildiz; Blanton S. Tolbert; Victoria D'Souza; Michael F. Summers; Christoph Kreutz; T. Kwaku Dayie

Isotope labeling has revolutionized NMR studies of small nucleic acids, but to extend this technology to larger RNAs, site‐specific labeling tools to expedite NMR structural and dynamics studies are required. Using enzymes from the pentose phosphate pathway, we coupled chemically synthesized uracil nucleobase with specifically 13C‐labeled ribose to synthesize both UTP and CTP in nearly quantitative yields. This chemoenzymatic method affords a cost‐effective preparation of labels that are unattainable by current methods. The methodology generates versatile 13C and 15N labeling patterns which, when employed with relaxation‐optimized NMR spectroscopy, effectively mitigate problems of rapid relaxation that result in low resolution and sensitivity. The methodology is demonstrated with RNAs of various sizes, complexity, and function: the exon splicing silencer 3 (27 nt), iron responsive element (29 nt), Pro‐tRNA (76 nt), and HIV‐1 core encapsidation signal (155 nt).


Biochemistry | 2010

RNA Internal Loops with Tandem AG Pairs: The Structure of the 5′GAGU/3′UGAG Loop Can Be Dramatically Different from Others, Including 5′AAGU/3′UGAA

Nicholas B. Hammond; Blanton S. Tolbert; Ryszard Kierzek; Douglas H. Turner; Scott D. Kennedy

Thermodynamic stabilities of 2 × 2 nucleotide tandem AG internal loops in RNA range from −1.3 to +3.4 kcal/mol at 37 °C and are not predicted well with a hydrogen-bonding model. To provide structural information to facilitate development of more sophisticated models for the sequence dependence of stability, we report the NMR solution structures of five RNA duplexes: (rGACGAGCGUCA)2, (rGACUAGAGUCA)2, (rGACAAGUGUCA)2, (rGGUAGGCCA)2, and (rGACGAGUGUCA)2. The structures of these duplexes are compared to that of the previously solved (rGGCAGGCC)2 (Wu, M., SantaLucia, J., Jr., and Turner, D. H. (1997) Biochemistry 36, 4449−4460). For loops bounded by Watson−Crick pairs, the AG and Watson−Crick pairs are all head-to-head imino-paired (cis Watson−Crick/Watson−Crick). The structures suggest that the sequence-dependent stability may reflect non-hydrogen-bonding interactions. Of the two loops bounded by G-U pairs, only the 5′UAGG/3′GGAU loop adopts canonical UG wobble pairing (cis Watson−Crick/Watson−Crick), with AG pairs that are only weakly imino-paired. Strikingly, the 5′GAGU/3′UGAG loop has two distinct duplex conformations, the major of which has both guanosine residues (G4 and G6 in (rGACGAGUGUCA)2) in a syn glycosidic bond conformation and forming a sheared GG pair (G4-G6*, GG trans Watson−Crick/Hoogsteen), both uracils (U7 and U7*) flipped out of the helix, and an AA pair (A5-A5*) in a dynamic or stacked conformation. These structures provide benchmarks for computational investigations into interactions responsible for the unexpected differences in loop free energies and structure.


RNA Biology | 2013

High-affinity interaction of hnRNP A1 with conserved RNA structural elements is required for translation and replication of enterovirus 71.

Jeffrey D. Levengood; Michele Tolbert; Mei-Ling Li; Blanton S. Tolbert

Human Enterovirus 71 (EV71) is an emerging pathogen of infectious disease and a serious threat to public health. Currently, there are no antivirals or vaccines to slow down or prevent EV71 infections, thus underscoring the urgency to better understand mechanisms of host-enterovirus interactions. EV71 uses a type I internal ribosome entry site (IRES) to recruit the 40S ribosomal subunit via a pathway that requires the cytoplasmic localization of hnRNP A1, which acts as an IRES trans-activating factor. The mechanism of how hnRNP A1 trans activates EV71 RNA translation is unknown, however. Here, we report that the UP1 domain of hnRNP A1 interacts specifically with stem loop II (SLII) of the IRES, via a thermodynamically well-defined biphasic transition that involves conserved bulge 5′-AYAGY-3′ and hairpin 5′-RY(U/A)CCA-3′ loops. Calorimetric titrations of wild-type and mutant SLII constructs reveal these structural elements are essential to form a high-affinity UP1-SLII complex. Mutations that alter the bulge and hairpin primary or secondary structures abrogate the biphasic transition and destabilize the complex. Notably, mutations within the bulge that destabilize the complex correlate with a large reduction in IRES-dependent translational activity and impair EV71 replication. Taken together, this study shows that a conserved SLII structure is necessary to form a functional hnRNP A1-IRES complex, suggesting that small molecules that target this stem loop may have novel antiviral properties.


Biochemistry | 2012

Differential binding between PatS C-terminal peptide fragments and HetR from Anabaena sp. PCC 7120.

Erik A. Feldmann; Shuisong Ni; Indra D. Sahu; Clay H. Mishler; Jeffrey D. Levengood; Yegor Kushnir; Robert M. McCarrick; Gary A. Lorigan; Blanton S. Tolbert; Sean M. Callahan; Michael A. Kennedy

Heterocyst differentiation in the filamentous cyanobacterium Anabaena sp. strain PCC 7120 occurs at regular intervals under nitrogen starvation and is regulated by a host of signaling molecules responsive to availability of fixed nitrogen. The heterocyst differentiation inhibitor PatS contains the active pentapeptide RGSGR (PatS-5) at its C-terminus considered the minimum PatS fragment required for normal heterocyst pattern formation. PatS-5 is known to bind HetR, the master regulator of heterocyst differentiation, with a moderate affinity and a submicromolar dissociation constant. Here we characterized the affinity of HetR for several PatS C-terminal fragments by measuring the relative ability of each fragment to knockdown HetR binding to DNA in electrophoretic mobility shift assays and using isothermal titration calorimetry (ITC). HetR bound to PatS-6 (ERGSGR) >30 times tighter (K(d) = 7 nM) than to PatS-5 (K(d) = 227 nM) and >1200 times tighter than to PatS-7 (DERGSGR) (K(d) = 9280 nM). No binding was detected between HetR and PatS-8 (CDERGSGR). Quantitative binding constants obtained from ITC measurements were consistent with qualitative results from the gel shift knockdown assays. CW EPR spectroscopy confirmed that PatS-6 bound to a MTSL spin-labeled HetR L252C mutant at a 10-fold lower concentration compared to PatS-5. Substituting the PatS-6 N-terminal glutamate to aspartate, lysine, or glycine did not alter binding affinity, indicating that neither the charge nor size of the N-terminal residues side chain played a role in enhanced HetR binding to PatS-6, but rather increased binding affinity resulted from new interactions with the PatS-6 N-terminal residue peptide backbone.


Biochemistry | 2014

Thermodynamic and Phylogenetic Insights into hnRNP A1 Recognition of the HIV-1 Exon Splicing Silencer 3 Element

Carrie Rollins; Jeffrey D. Levengood; Brittany D. Rife; Marco Salemi; Blanton S. Tolbert

Complete expression of the HIV-1 genome requires balanced usage of suboptimal splice sites. The 3′ acceptor site A7 (ssA7) is negatively regulated in part by an interaction between the host hnRNP A1 protein and a viral splicing silencer (ESS3). Binding of hnRNP A1 to ESS3 and other upstream silencers is sufficient to occlude spliceosome assembly. Efforts to understand the splicing repressive properties of hnRNP A1 on ssA7 have revealed hnRNP A1 binds specific sites within the context of a highly folded RNA structure; however, biochemical models assert hnRNP A1 disrupts RNA structure through cooperative spreading. In an effort to improve our understanding of the ssA7 binding properties of hnRNP A1, herein we have performed a combined phylogenetic and biophysical study of the interaction of its UP1 domain with ESS3. Phylogenetic analyses of group M sequences (x̅ = 2860) taken from the Los Alamos HIV database reveal the ESS3 stem loop (SL3ESS3) structure has been conserved throughout HIV-1 evolution, despite variations in primary sequence. Calorimetric titrations with UP1 clearly show the SL3ESS3 structure is a critical binding determinant because deletion of the base-paired region reduces the affinity by ∼150-fold (Kd values of 27.8 nM and 4.2 μM). Cytosine substitutions of conserved apical loop nucleobases show UP1 preferentially binds purines over pyrimidines, where site-specific interactions were detected via saturation transfer difference nuclear magnetic resonance. Chemical shift mapping of the UP1–SL3ESS3 interface by 1H–15N heteronuclear single-quantum coherence spectroscopy titrations reveals a broad interaction surface on UP1 that encompasses both RRM domains and the inter-RRM linker. Collectively, our results describe a UP1 binding mechanism that is likely different from current models used to explain the alternative splicing properties of hnRNP A1.


Journal of Biological Chemistry | 2016

Solution Structure of the HIV-1 Intron Splicing Silencer and Its Interactions with the UP1 Domain of Heterogeneous Nuclear Ribonucleoprotein (hnRNP) A1.

Niyati Jain; Christopher E. Morgan; Brittany D. Rife; Marco Salemi; Blanton S. Tolbert

Splicing patterns in human immunodeficiency virus type 1 (HIV-1) are maintained through cis regulatory elements that recruit antagonistic host RNA-binding proteins. The activity of the 3′ acceptor site A7 is tightly regulated through a complex network of an intronic splicing silencer (ISS), a bipartite exonic splicing silencer (ESS3a/b), and an exonic splicing enhancer (ESE3). Because HIV-1 splicing depends on protein-RNA interactions, it is important to know the tertiary structures surrounding the splice sites. Herein, we present the NMR solution structure of the phylogenetically conserved ISS stem loop. ISS adopts a stable structure consisting of conserved UG wobble pairs, a folded 2X2 (GU/UA) internal loop, a UU bulge, and a flexible AGUGA apical loop. Calorimetric and biochemical titrations indicate that the UP1 domain of heterogeneous nuclear ribonucleoprotein A1 binds the ISS apical loop site-specifically and with nanomolar affinity. Collectively, this work provides additional insights into how HIV-1 uses a conserved RNA structure to commandeer a host RNA-binding protein.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Rules of RNA specificity of hnRNP A1 revealed by global and quantitative analysis of its affinity distribution

Niyati Jain; Hsuan Chun Lin; Christopher E. Morgan; Michael E. Harris; Blanton S. Tolbert

Significance Human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a key protein that functions in RNA metabolism both under normal and diseased cellular conditions. Despite playing a central role in eukaryotic biology, the mechanisms by which hnRNP A1 discriminates between cognate and noncognate RNA targets remain poorly understood. Here, we combined high-throughput sequencing analysis of equilibrium binding (HTS-EQ) experiments with independent biophysical measurements to reveal the complete hnRNP A1 specificity landscape. The data show that RNA sequence, motif copy number, spacing, and secondary structure determine specificity by modulating rates of productive hnRNP A1-RNA encounters. Thus, our work provides significant insights into the combinatorial factors that determine how hnRNP A1 identifies functional binding sites in vivo. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a multipurpose RNA-binding protein (RBP) involved in normal and pathological RNA metabolism. Transcriptome-wide mapping and in vitro evolution identify consensus hnRNP A1 binding motifs; however, such data do not reveal how surrounding RNA sequence and structural context modulate affinity. We determined the affinity of hnRNP A1 for all possible sequence variants (n = 16,384) of the HIV exon splicing silencer 3 (ESS3) 7-nt apical loop. Analysis of the affinity distribution identifies the optimal motif 5′-YAG-3′ and shows how its copy number, position in the loop, and loop structure modulate affinity. For a subset of ESS3 variants, we show that specificity is determined by association rate constants and that variants lacking the minimal sequence motif bind competitively with consensus RNA. Thus, the results reveal general rules of specificity of hnRNP A1 and provide a quantitative framework for understanding how it discriminates between alternative competing RNA ligands in vivo.


Biosensors and Bioelectronics | 2018

Application of bioconjugation chemistry on biosensor fabrication for detection of TAR-DNA binding protein 43

Yifan Dai; Chunlai Wang; Liang Yuan Chiu; Kevin Abbasi; Blanton S. Tolbert; Geneviève Sauvé; Yun Yen; Chung-Chiun Liu

A simple-prepare, single-use and cost-effective, in vitro biosensor for the detection of TAR DNA-binding protein 43 (TDP-43), a biomarker of neuro-degenerative disorders, was designed, manufactured and tested. This study reports the first biosensor application for the detection of TDP-43 using a novel biosensor fabrication methodology. Bioconjugation mechanism was applied by conjugating anti-TDP 43 with N-succinimidyl S-acetylthioacetate (SATA) producing a thiol-linked anti-TDP 43, which was used to directly link with gold electrode surface, minimizing the preparation steps for biosensor fabrication and simplifying the biosensor surface. The effectiveness of this bioconjugation mechanism was evaluated and confirmed by FqRRM12 protein, using nuclear magnetic resonance (NMR). The surface coverage of the electrode was analyzed by Time-of-Flight-Secondary Ion Mass Spectrometry (TOF-SIMS). Differential pulse voltammetry (DPV) was acted as the detection transduction mechanism with the use of [Fe(CN)6]3-/4-redox probe. Human TDP-43 peptide of 0.0005 µg/mL to 2 µg/mL in undiluted human serum was analyzed using this TDP-43 biosensor. Interference study of the TDP-43 biosensor using β-amyloid 42 protein and T-tau protein confirmed the specificity of this TDP-43 biosensor. This bioconjugation chemistry based approach for biosensor fabrication circumvents tedious gold surface modification and functionalization while enabling specific detection of TDP-43 in less than 1 h with a low fabrication cost of a single biosensor less than

Collaboration


Dive into the Blanton S. Tolbert's collaboration.

Top Co-Authors

Avatar

Jeffrey D. Levengood

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Christopher E. Morgan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Niyati Jain

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang-Yuan Chiu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge