Blerina Ahmetaj-Shala
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Blerina Ahmetaj-Shala.
Circulation | 2015
Blerina Ahmetaj-Shala; Nicholas S. Kirkby; Rebecca Knowles; Malak Al-Yamani; Sarah Mazi; Zhen Wang; Arthur Tucker; Louise Susan MacKenzie; Paul C. J. Armstrong; Rolf M. Nüsing; James Tomlinson; Timothy D. Warner; James Leiper; Jane A. Mitchell
Background— Cardiovascular side effects associated with cyclooxygenase-2 inhibitor drugs dominate clinical concern. Cyclooxygenase-2 is expressed in the renal medulla where inhibition causes fluid retention and increased blood pressure. However, the mechanisms linking cyclooxygenase-2 inhibition and cardiovascular events are unknown and no biomarkers have been identified. Methods and Results— Transcriptome analysis of wild-type and cyclooxygenase-2−/− mouse tissues revealed 1 gene altered in the heart and aorta, but >1000 genes altered in the renal medulla, including those regulating the endogenous nitric oxide synthase inhibitors asymmetrical dimethylarginine (ADMA) and monomethyl-L-arginine. Cyclo-oxygenase-2−/− mice had increased plasma levels of ADMA and monomethyl-L-arginine and reduced endothelial nitric oxide responses. These genes and methylarginines were not similarly altered in mice lacking prostacyclin receptors. Wild-type mice or human volunteers taking cyclooxygenase-2 inhibitors also showed increased plasma ADMA. Endothelial nitric oxide is cardio-protective, reducing thrombosis and atherosclerosis. Consequently, increased ADMA is associated with cardiovascular disease. Thus, our study identifies ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction with nonsteroidal anti-inflammatory drug usage. Conclusions— We identify the endogenous endothelial nitric oxide synthase inhibitor ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Nicholas S. Kirkby; Melissa V. Chan; Anne K. Zaiss; Eliana Garcia-Vaz; Jing Jiao; Lisa Berglund; Elena F. Verdu; Blerina Ahmetaj-Shala; John L. Wallace; Harvey R. Herschman; Maria F. Gomez; Jane A. Mitchell
Significance Nonsteroidal antiinflammatory drugs (NSAIDs) work by inhibiting cyclooxygenase-2 (COX-2) induced at sites of inflammation. They are among the most widely used drugs worldwide, but their cardiovascular side effects are a major concern for patients, regulators, and industry. NSAID side effects are mediated by inhibition of constitutively expressed COX-2 present in discrete regions, including the kidney. However, the pathways driving constitutive COX-2 remain poorly understood. The work presented here defines these pathways and importantly shows constitutive COX-2 expression in the kidney occurs through pathways distinct to those driving COX-2 in inflammation. These data therefore highlight the potential that targeting COX-2 at the transcriptional level may provide a way to dissociate antiinflammatory benefits of NSAIDs from their treatment-limiting cardiovascular side effects. Cyclooxygenase-2 (COX-2) is an inducible enzyme that drives inflammation and is the therapeutic target for widely used nonsteroidal antiinflammatory drugs (NSAIDs). However, COX-2 is also constitutively expressed, in the absence of overt inflammation, with a specific tissue distribution that includes the kidney, gastrointestinal tract, brain, and thymus. Constitutive COX-2 expression is therapeutically important because NSAIDs cause cardiovascular and renal side effects in otherwise healthy individuals. These side effects are now of major concern globally. However, the pathways driving constitutive COX-2 expression remain poorly understood. Here we show that in the kidney and other sites, constitutive COX-2 expression is a sterile response, independent of commensal microorganisms and not associated with activity of the inflammatory transcription factor NF-κB. Instead, COX-2 expression in the kidney but not other regions colocalized with nuclear factor of activated T cells (NFAT) transcription factor activity and was sensitive to inhibition of calcineurin-dependent NFAT activation. However, calcineurin/NFAT regulation did not contribute to constitutive expression elsewhere or to inflammatory COX-2 induction at any site. These data address the mechanisms driving constitutive COX-2 and suggest that by targeting transcription it may be possible to develop antiinflammatory therapies that spare the constitutive expression necessary for normal homeostatic functions, including those important to the cardiovascular-renal system.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2015
Simon Lambden; Peter Kelly; Blerina Ahmetaj-Shala; Zhen Wang; Benjamin Lee; Manasi Nandi; Belen Torondel; Matthew Delahaye; Laura Dowsett; Sophie Piper; James Tomlinson; Ben Caplin; Lucy Colman; Olga Boruc; Anna Slaviero; Lan Zhao; Eduardo Oliver; Sanjay Khadayate; Mervyn Singer; Francesca Arrigoni; James Leiper
Objective—Nitric oxide is a key to numerous physiological and pathophysiological processes. Nitric oxide production is regulated endogenously by 2 methylarginines, asymmetric dimethylarginine (ADMA) and monomethyl-L-arginine. The enzyme that specifically metabolizes asymmetric dimethylarginine and monomethyl-L-arginine is dimethylarginine dimethylaminohydrolase (DDAH). The first isoform dimethylarginine dimethylaminohydrolase 1 has previously been shown to be an important regulator of methylarginines in both health and disease. This study explores for the first time the role of endogenous dimethylarginine dimethylaminohydrolase 2 in regulating cardiovascular physiology and also determines the functional impact of dimethylarginine dimethylaminohydrolase 2 deletion on outcome and immune function in sepsis. Approach and Results—Mice, globally deficient in Ddah2, were compared with their wild-type littermates to determine the physiological role of Ddah2 using in vivo and ex vivo assessments of vascular function. We show that global knockout of Ddah2 results in elevated blood pressure during periods of activity (mean [SEM], 118.5 [1.3] versus 112.7 [1.1] mm Hg; P=0.025) and changes in vascular responsiveness mediated by changes in methylarginine concentration, mean myocardial tissue asymmetric dimethylarginine (SEM) was 0.89 (0.06) versus 0.67 (0.05) &mgr;mol/L (P=0.02) and systemic nitric oxide concentrations. In a model of severe polymicrobial sepsis, Ddah2 knockout affects outcome (120-hour survival was 12% in Ddah2 knockouts versus 53% in wild-type animals; P<0.001). Monocyte-specific deletion of Ddah2 results in a similar pattern of increased severity to that seen in globally deficient animals. Conclusions—Ddah2 has a regulatory role both in normal physiology and in determining outcome of severe polymicrobial sepsis. Elucidation of this role identifies a mechanism for the observed relationship between Ddah2 polymorphisms, cardiovascular disease, and outcome in sepsis.
Global Cardiology Science and Practice | 2014
Jane A. Mitchell; Blerina Ahmetaj-Shala; Nicholas S. Kirkby; William R. Wright; Louise Susan MacKenzie; Daniel M. Reed; Nura A. Mohamed
Prostacyclin is a powerful cardioprotective hormone released by the endothelium of all blood vessels. Prostacyclin exists in equilibrium with other vasoactive hormones and a disturbance in the balance of these factors leads to cardiovascular disease including pulmonary arterial hypertension. Since its discovery in the 1970s concerted efforts have been made to make the best therapeutic utility of prostacyclin, particularly in the treatment of pulmonary arterial hypertension. This has centred on working out the detailed pharmacology of prostacyclin and then synthesising new molecules based on its structure that are more stable or more easily tolerated. In addition, newer molecules have been developed that are not analogues of prostacyclin but that target the receptors that prostacyclin activates. Prostacyclin and related drugs have without doubt revolutionised the treatment and management of pulmonary arterial hypertension but are seriously limited by side effects within the systemic circulation. With the dawn of nanomedicine and targeted drug or stem cell delivery systems it will, in the very near future, be possible to make new formulations of prostacyclin that can evade the systemic circulation allowing for safe delivery to the pulmonary vessels. In this way, the full therapeutic potential of prostacyclin can be realised opening the possibility that pulmonary arterial hypertension will become, if not curable, a chronic manageable disease that is no longer fatal. This review discusses these and other issues relating to prostacyclin and its use in pulmonary arterial hypertension.
Biochemical and Biophysical Research Communications | 2014
Daniel M. Reed; Gabor Foldes; Nicholas S. Kirkby; Blerina Ahmetaj-Shala; Stefania Mataragka; Nura A. Mohamed; Catherine Francis; E Gara; Sian E. Harding; Jane A. Mitchell
Endothelial cells form a highly specialised lining of all blood vessels where they provide an anti-thrombotic surface on the luminal side and protect the underlying vascular smooth muscle on the abluminal side. Specialised functions of endothelial cells include their unique ability to release vasoactive hormones and to morphologically adapt to complex shear stress. Stem cell derived-endothelial cells have a growing number of applications and will be critical in any organ regeneration programme. Generally endothelial cells are identified in stem cell studies by well-recognised markers such as CD31. However, the ability of stem cell-derived endothelial cells to release vasoactive hormones and align with shear stress has not been studied extensively. With this in mind, we have compared directly the ability of endothelial cells derived from a range of stem cell sources, including embryonic stem cells (hESC-EC) and adult progenitors in blood (blood out growth endothelial cells, BOEC) with those cultured from mature vessels, to release the vasoconstrictor peptide endothelin (ET)-1, the cardioprotective hormone prostacyclin, and to respond morphologically to conditions of complex shear stress. All endothelial cell types, except hESC-EC, released high and comparable levels of ET-1 and prostacyclin. Under static culture conditions all endothelial cell types, except for hESC-EC, had the typical cobblestone morphology whilst hESC-EC had an elongated phenotype. When cells were grown under shear stress endothelial cells from vessels (human aorta) or BOEC elongated and aligned in the direction of shear. By contrast hESC-EC did not align in the direction of shear stress. These observations show key differences in endothelial cells derived from embryonic stem cells versus those from blood progenitor cells, and that BOEC are more similar than hESC-EC to endothelial cells from vessels. This may be advantageous in some settings particularly where an in vitro test bed is required. However, for other applications, because of low ET-1 release hESC-EC may prove to be protected from vascular inflammation.
Cardiovascular Research | 2017
Lucie Duluc; Blerina Ahmetaj-Shala; Jane A. Mitchell; Vahitha B. Abdul-Salam; Abdul S. Mahomed; Lulwah Aldabbous; Eduardo Oliver; Lucio Iannone; Olivier Dubois; Elisabeth M. Storck; Edward W. Tate; Lan Zhao; Martin R. Wilkins; Beata Wojciak-Stothard
Aims RhoB plays a key role in the pathogenesis of hypoxia-induced pulmonary hypertension. Farnesylated RhoB promotes growth responses in cancer cells and we investigated whether inhibition of protein farnesylation will have a protective effect. Methods and results The analysis of lung tissues from rodent models and pulmonary hypertensive patients showed increased levels of protein farnesylation. Oral farnesyltransferase inhibitor tipifarnib prevented development of hypoxia-induced pulmonary hypertension in mice. Tipifarnib reduced hypoxia-induced vascular cell proliferation, increased endothelium-dependent vasodilatation and reduced vasoconstriction of intrapulmonary arteries without affecting cell viability. Protective effects of tipifarnib were associated with inhibition of Ras and RhoB, actin depolymerization and increased eNOS expression in vitro and in vivo. Farnesylated-only RhoB (F-RhoB) increased proliferative responses in cultured pulmonary vascular cells, mimicking the effects of hypoxia, while both geranylgeranylated-only RhoB (GG-RhoB), and tipifarnib had an inhibitory effect. Label-free proteomics linked F-RhoB with cell survival, activation of cell cycle and mitochondrial biogenesis. Hypoxia increased and tipifarnib reduced the levels of F-RhoB-regulated proteins in the lung, reinforcing the importance of RhoB as a signalling mediator. Unlike simvastatin, tipifarnib did not increase the expression levels of Rho proteins. Conclusions Our study demonstrates the importance of protein farnesylation in pulmonary vascular remodelling and provides a rationale for selective targeting of this pathway in pulmonary hypertension.
Journal of Cardiovascular Translational Research | 2016
Nura A. Mohamed; Blerina Ahmetaj-Shala; Lucie Duluc; Louise Susan MacKenzie; Nicholas S. Kirkby; Daniel M. Reed; Paul D. Lickiss; Robert P. Davies; Gemma R. Freeman; Beata Wojciak-Stothard; Adrian H. Chester; Ibrahim M. El-Sherbiny; Jane A. Mitchell; Magdi H. Yacoub
Pulmonary arterial hypertension (PAH) is a chronic and progressive disease which continues to carry an unacceptably high mortality and morbidity. The nitric oxide (NO) pathway has been implicated in the pathophysiology and progression of the disease. Its extremely short half-life and systemic effects have hampered the clinical use of NO in PAH. In an attempt to circumvent these major limitations, we have developed a new NO-nanomedicine formulation. The formulation was based on hydrogel-like polymeric composite NO-releasing nanoparticles (NO-RP). The kinetics of NO release from the NO-RP showed a peak at about 120 min followed by a sustained release for over 8 h. The NO-RP did not affect the viability or inflammation responses of endothelial cells. The NO-RP produced concentration-dependent relaxations of pulmonary arteries in mice with PAH induced by hypoxia. In conclusion, NO-RP drugs could considerably enhance the therapeutic potential of NO therapy for PAH.
The American Journal of Chinese Medicine | 2017
Li-Yen Huang; I-Chuan Yen; Wei-Cheng Tsai; Blerina Ahmetaj-Shala; Tsu-Chung Chang; Chien-Sung Tsai; Shih-Yu Lee
Rhodiola crenulata root extract (RCE), a traditional Chinese medicine, has been shown to regulate glucose and lipid metabolism via the AMPK pathway in high glucose (HG) conditions. However, the effect of RCE on HG-induced endothelial dysfunction remains unclear. The present study was designed to examine the effects and mechanisms of RCE against hyperglycemic insult in endothelial cells. Human umbilical vein endothelial cells (HUVECs) were pretreated with or without RCE and then exposed to 33[Formula: see text]mM HG medium. The cell viability, nitrite production, oxidative stress markers, and vasoactive factors, as well as the mechanisms underlying RCE action, were then investigated. We found that RCE significantly improved cell death, nitric oxide (NO) defects, and oxidative stress in HG conditions. In addition, RCE significantly decreased the HG-induced vasoactive markers, including endothelin-1 (ET-1), fibronectin, and vascular endothelial growth factor (VEGF). However, the RCE-restored AMPK-Akt-eNOS-NO axis and cell viability were abolished by the presence of an AMPK inhibitor. These findings suggested that the protective effects of RCE were associated with the AMPK-Akt-eNOS-NO signaling pathway. In conclusion, we showed that RCE protected endothelial cells from hyperglycemic insult and demonstrated its potential for use as a treatment for endothelial dysfunction in diabetes mellitus.
Scientific Reports | 2017
Shih-Yu Lee; Wei-Cheng Tsai; Jung-Chun Lin; Blerina Ahmetaj-Shala; Su-Feng Huang; Wen-Liang Chang; Tsu-Chung Chang
Astragaloside II (AS II) extracted from Astragalus membranaceus has been reported to promote tissue wound repair. However, the effect of AS II on inflammatory bowel disease is unknown. We investigated the effects and mechanism of AS II on intestinal wound healing in both in vitro and in vivo models. Human intestinal Caco-2 cells were treated with multiple concentrations of AS II to assess cell proliferation, scratch wound closure, L-arginine uptake, cationic amino acid transporter activity, and activation of the mTOR signaling pathway. These effects were also measured in a mouse model of colitis. AS II promoted wound closure and increased cell proliferation, L-arginine uptake, CAT1 and CAT2 protein levels, total protein synthesis, and phosphorylation of mTOR, S6K, and 4E-BP1 in Caco-2 cells. These effects were suppressed by lysine or rapamycin treatment, suggesting that the enhanced arginine uptake mediates AS II-induced wound healing. Similar results were also observed in vivo. Our findings indicate that AS II can contribute to epithelial barrier repair following intestinal injury, and may offer a therapeutic avenue in treating irritable bowel disease.
Pulmonary circulation | 2017
Nura A. Mohamed; Robert P. Davies; Paul D. Lickiss; Blerina Ahmetaj-Shala; Daniel M. Reed; Hime Gashaw; Hira Saleem; Gemma R. Freeman; Peter M. George; Stephen J. Wort; Daniel Morales-Cano; Bianca Barreira; Teresa D. Tetley; Adrian H. Chester; Magdi H. Yacoub; Nicholas S. Kirkby; Laura Moreno; Jane A. Mitchell
Pulmonary arterial hypertension (PAH) is a progressive and debilitating condition. Despite promoting vasodilation, current drugs have a therapeutic window within which they are limited by systemic side effects. Nanomedicine uses nanoparticles to improve drug delivery and/or reduce side effects. We hypothesize that this approach could be used to deliver PAH drugs avoiding the systemic circulation. Here we report the use of iron metal organic framework (MOF) MIL-89 and PEGylated MIL-89 (MIL-89 PEG) as suitable carriers for PAH drugs. We assessed their effects on viability and inflammatory responses in a wide range of lung cells including endothelial cells grown from blood of donors with/without PAH. Both MOFs conformed to the predicted structures with MIL-89 PEG being more stable at room temperature. At concentrations up to 10 or 30 µg/mL, toxicity was only seen in pulmonary artery smooth muscle cells where both MOFs reduced cell viability and CXCL8 release. In endothelial cells from both control donors and PAH patients, both preparations inhibited the release of CXCL8 and endothelin-1 and in macrophages inhibited inducible nitric oxide synthase activity. Finally, MIL-89 was well-tolerated and accumulated in the rat lungs when given in vivo. Thus, the prototypes MIL-89 and MIL-89 PEG with core capacity suitable to accommodate PAH drugs are relatively non-toxic and may have the added advantage of being anti-inflammatory and reducing the release of endothelin-1. These data are consistent with the idea that these materials may not only be useful as drug carriers in PAH but also offer some therapeutic benefit in their own right.