Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bo Du is active.

Publication


Featured researches published by Bo Du.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice

Bo Du; Weilin Zhang; Bingfang Liu; Jing Hu; Zhe Wei; Zhenying Shi; Ruifeng He; Lili Zhu; Rongzhi Chen; Bin Han; Guangcun He

Planthoppers are highly destructive pests in crop production worldwide. Brown planthopper (BPH) causes the most serious damage of the rice crop globally among all rice pests. Growing resistant varieties is the most effective and environment-friendly strategy for protecting the crop from BPH. More than 19 BPH-resistance genes have been reported and used to various extents in rice breeding and production. In this study, we cloned Bph14, a gene conferring resistance to BPH at seedling and maturity stages of the rice plant, using a map-base cloning approach. We show that Bph14 encodes a coiled-coil, nucleotide-binding, and leucine-rich repeat (CC-NB-LRR) protein. Sequence comparison indicates that Bph14 carries a unique LRR domain that might function in recognition of the BPH insect invasion and activating the defense response. Bph14 is predominantly expressed in vascular bundles, the site of BPH feeding. Expression of Bph14 activates the salicylic acid signaling pathway and induces callose deposition in phloem cells and trypsin inhibitor production after planthopper infestation, thus reducing the feeding, growth rate, and longevity of the BPH insects. Our work provides insights into the molecular mechanisms of rice defense against insects and facilitates the development of resistant varieties to control this devastating insect.


PLOS ONE | 2011

Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the Hemipteran insect Nilaparvata lugens

Wenjun Zha; Xinxin Peng; Rongzhi Chen; Bo Du; Lili Zhu; Guangcun He

Background RNA interference (RNAi) is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. Methodology/Principal Findings The Hemipteran insect brown planthopper (Nilaparvata lugens Stål) is a typical phloem sap feeder specific to rice (Oryza sativa L.). To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub) encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry) that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. Conclusions Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub) are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants.


Planta | 2011

A rice β-1,3-glucanase gene Osg1 is required for callose degradation in pollen development

Linglin Wan; Wenjun Zha; Xiaoyan Cheng; Chuan Liu; Lu Lv; Caixiang Liu; Zhanqi Wang; Bo Du; Rongzhi Chen; Lili Zhu; Guangcun He

Plant β-1,3-glucanases are involved in plant defense and development. In rice (Oryza sativa), 14 genes encoding putative β-1,3-glucanases have been isolated and sequenced. However, only limited information is available on the function of these β-1,3-glucanase genes. In this study, we report a detailed functional characterization of one of these genes, Osg1. Osg1 encodes a glucanase carrying no C-terminal extension. Osg1 was found to be expressed throughout the plant and highly expressed in florets, leaf sheaths, and leaf blades. Investigations using real-time PCR, immunocytochemical analysis, and a GUS-reporter gene driven by the Osg1 promoter indicated that Osg1 was mainly expressed at the late meiosis, early microspore, and middle microspore stages in the florets. To elucidate the role of Osg1, we suppressed expression of the Osg1 gene by RNA interference in transgenic rice. The silencing of Osg1 resulted in male sterility. The pollen mother cells appeared to be normal in Osg1-RI plants, but callose degradation was disrupted around the microspores in the anther locules of the Osg1-RI plants at the early microspore stage. Consequently, the release of the young microspores into the anther locules was delayed, and the microspores began to degenerate later. These results provide evidence that Osg1 is essential for timely callose degradation in the process of tetrad dissolution.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation

Yan Zhao; Jin Huang; Zhizheng Wang; Shengli Jing; Yang Wang; Yidan Ouyang; Bao-Dong Cai; Xiu Fang Xin; Xin Liu; Chunxiao Zhang; Yufang Pan; Qiaofeng Li; Weihua Jiang; Ya Zeng; Xinxin Shangguan; Huiying Wang; Bo Du; Lili Zhu; Xun Xu; Yu-Qi Feng; Sheng Yang He; Rongzhi Chen; Qifa Zhang; Guangcun He

Significance Insect pests represent a major constraint that reduces crop yield and quality globally. Host plant resistance is often used as a key tactic to control insect pests, but is frequently overcome by newly emerged insect populations. In nature, plants have developed various strategies for sustainable defense. In this work, we isolated a brown planthopper-resistance gene, BPH9, and show that alleles of this gene locus have been widely used in rice breeding and saved rice production from massive brown planthopper (BPH) damage. Allelic diversity in this gene locus has provided resistance to rice against different BPH populations. Manipulating allelic diversity of the gene may provide a strategy for developing resistant varieties to cope with evolving insect populations with new virulence variation. Brown planthopper (BPH), Nilaparvata lugens Stål, is one of the most devastating insect pests of rice (Oryza sativa L.). Currently, 30 BPH-resistance genes have been genetically defined, most of which are clustered on specific chromosome regions. Here, we describe molecular cloning and characterization of a BPH-resistance gene, BPH9, mapped on the long arm of rice chromosome 12 (12L). BPH9 encodes a rare type of nucleotide-binding and leucine-rich repeat (NLR)-containing protein that localizes to the endomembrane system and causes a cell death phenotype. BPH9 activates salicylic acid- and jasmonic acid-signaling pathways in rice plants and confers both antixenosis and antibiosis to BPH. We further demonstrated that the eight BPH-resistance genes that are clustered on chromosome 12L, including the widely used BPH1, are allelic with each other. To honor the priority in the literature, we thus designated this locus as BPH1/9. These eight genes can be classified into four allelotypes, BPH1/9-1, -2, -7, and -9. These allelotypes confer varying levels of resistance to different biotypes of BPH. The coding region of BPH1/9 shows a high level of diversity in rice germplasm. Homologous fragments of the nucleotide-binding (NB) and leucine-rich repeat (LRR) domains exist, which might have served as a repository for generating allele diversity. Our findings reveal a rice plant strategy for modifying the genetic information to gain the upper hand in the struggle against insect herbivores. Further exploration of natural allelic variation and artificial shuffling within this gene may allow breeding to be tailored to control emerging biotypes of BPH.


Plant Journal | 2013

A rice lectin receptor-like kinase that is involved in innate immune responses also contributes to seed germination

Xiaoyan Cheng; Yan Wu; Jianping Guo; Bo Du; Rongzhi Chen; Lili Zhu; Guangcun He

Seed germination and innate immunity both have significant effects on plant life spans because they control the plants entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor-like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two-hybrid and co-immunoprecipitation experiments revealed that OslecRK interacts with an actin-depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high-vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.


Plant Physiology | 2011

The Bphi008a Gene Interacts with the Ethylene Pathway and Transcriptionally Regulates MAPK Genes in the Response of Rice to Brown Planthopper Feeding

Jing Hu; Jiangbo Zhou; Xinxin Peng; Henghao Xu; Caixiang Liu; Bo Du; Hongyu Yuan; Lili Zhu; Guangcun He

We examined ways in which the Brown planthopper induced008a (Bphi008a; AY256682) gene of rice (Oryza sativa) enhances the plant’s resistance to a specialist herbivore, the brown planthopper (BPH; Nilaparvata lugens). Measurement of the expression levels of ethylene synthases and of ethylene emissions showed that BPH feeding rapidly initiated the ethylene signaling pathway and up-regulated Bphi008a transcript levels after 6 to 96 h of feeding. In contrast, blocking ethylene transduction (using 1-methylcyclopropene) reduced Bphi008a transcript levels in wild-type plants fed upon by BPH. In vitro kinase assays showed that Bphi008a can be phosphorylated by rice Mitogen-activated Protein Kinase5 (OsMPK5), and yeast two-hybrid assays demonstrated that the carboxyl-terminal proline-rich region of Bphi008a interacts directly with this kinase. Furthermore, bimolecular fluorescence complementation assays showed that this interaction occurs in the nucleus. Subsequently, we found that Bphi008a up-regulation and down-regulation were accompanied by different changes in transcription levels of OsMPK5, OsMPK12, OsMPK13, and OsMPK17 in transgenic plants. Immunoblot analysis also showed that the OsMPK5 protein level increased in overexpressing plants and decreased in RNA interference plants after BPH feeding. In transgenic lines, changes in the expression levels of several enzymes that are important components of the defenses against the BPH were also observed. Finally, yeast two-hybrid screening results showed that Bphi008a is able to interact with a b-ZIP transcription factor (OsbZIP60) and a RNA polymerase polypeptide (SDRP).


Journal of Plant Physiology | 2015

Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice

Ba Du; Zhe Wei; Zhanqi Wang; Xiaoxiao Wang; Xinxin Peng; Bo Du; Rongzhi Chen; Lili Zhu; Guangcun He

Brown plant-hopper (Nilaparvata lugens Stål, BPH), one of the most devastating agricultural insect pests of rice throughout Asia, ingests nutrients from rice sieve tubes and causes a dramatic yield loss. Planting resistant variety is an efficient and economical way to control this pest. Understanding the mechanisms of host resistance is extremely valuable for molecular design of resistant rice variety. Here, we used an iTRAQ-based quantitative proteomics approach to perform analysis of protein expression profiles in the phloem exudates of BPH-resistant and susceptible rice plants following BPH infestation. A total of 238 proteins were identified, most of which were previously described to be present in the phloem of rice and other plants. The expression of genes for selected proteins was confirmed using a laser capture micro-dissection method and RT-PCR. The mRNAs for three proteins, RGAP, TCTP, and TRXH, were further analyzed by using in situ mRNA hybridization and localized in the phloem cells. Our results showed that BPH feeding induced significant changes in the abundance of proteins in phloem sap of rice involved in multiple pathways, including defense signal transduction, redox regulation, and carbohydrate and protein metabolism, as well as cell structural proteins. The results presented provide new insights into rice resistance mechanisms and should facilitate the breeding of novel elite BPH-resistant rice varieties.


Current opinion in insect science | 2017

Genomics of interaction between the brown planthopper and rice

Shengli Jing; Yan Zhao; Bo Du; Rongzhi Chen; Lili Zhu; Guangcun He

Rice (Oryza sativa L.) and the brown planthopper (Nilaparvata lugens (Stål)) form a model system for dissection of the mechanism of interaction between insect pest and crop. In this review, we focus on the genomics of BPH-rice interaction. On the side of rice, a number of BPH-resistance genes have been identified genetically. Thirteen of these genes have been cloned which shed a light on the molecular basis of the interaction. On the aspect of BPH, a lot of salivary proteins have been identified using transcriptome and proteome techniques. The genetic loci of virulence were mapped in BPH genome based on the linkage map. The understanding of interaction between BPH and rice will provide novel insights into efficient control of this pest.


The Plant Cell | 2017

The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice

Liang Hu; Yan Wu; Di Wu; Weiwei Rao; Jianping Guo; Yinhua Ma; Zhizheng Wang; Xinxin Shangguan; Huiying Wang; Chunxue Xu; Jin Huang; Shaojie Shi; Rongzhi Chen; Bo Du; Lili Zhu; Guangcun He

The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 interact with WRKY transcription factors to activate defense signaling and confer resistance to planthopper attack. BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46- and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.


Plant Physiology | 2018

A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants

Xinxin Shangguan; Jing Zhang; Bingfang Liu; Yan Zhao; Huiying Wang; Zhizheng Wang; Jianping Guo; Weiwei Rao; Shengli Jing; Wei Guan; Yinhua Ma; Yan Wu; Liang Hu; Rongzhi Chen; Bo Du; Lili Zhu; Dazhao Yu; Guangcun He

A secreted mucin-like protein in the rice brown planthopper (Nilaparvata lugens) enables insect feeding and induces plant immune responses. The brown planthopper, Nilaparvata lugens, is a pest that threatens rice (Oryza sativa) production worldwide. While feeding on rice plants, planthoppers secrete saliva, which plays crucial roles in nutrient ingestion and modulating plant defense responses, although the specific functions of salivary proteins remain largely unknown. We identified an N. lugens-secreted mucin-like protein (NlMLP) by transcriptome and proteome analyses and characterized its function, both in brown planthopper and in plants. NlMLP is highly expressed in salivary glands and is secreted into rice during feeding. Inhibition of NlMLP expression in planthoppers disturbs the formation of salivary sheaths, thereby reducing their performance. In plants, NlMLP induces cell death, the expression of defense-related genes, and callose deposition. These defense responses are related to Ca2+ mobilization and the MEK2 MAP kinase and jasmonic acid signaling pathways. The active region of NlMLP that elicits plant responses is located in its carboxyl terminus. Our work provides a detailed characterization of a salivary protein from a piercing-sucking insect other than aphids. Our finding that the protein functions in plant immune responses offers new insights into the mechanism underlying interactions between plants and herbivorous insects.

Collaboration


Dive into the Bo Du's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge